Author: Gerald Young
Publisher: Springer
ISBN: 9783030825423
Category : Psychology
Languages : en
Pages : 0
Book Description
This book represents a broad integration of several major themes in psychology toward its unification. Unifying psychology is an ongoing project that has no end-point, but the present work suggests several major axes toward that end, including causality and activation-inhibition coordination. On the development side of the model building, the author has constructed an integrated lifespan stage model of development across the Piagetian cognitive and the Eriksonian socioaffective domains. The model is based on the concept of neo-stages, which mitigates standard criticisms of developmental stage models. The new work in the second half of the book extends the primary work in the first half both in terms of causality and development. Also, the area of couple work is examined from the stage perspective. Finally, new concepts related to the main themes are represented, including on the science formula, executive function, stress dysregulation disorder, inner peace, and ethics, all toward showing the rich potential of the present modeling.
Causality and Neo-Stages in Development
Author: Gerald Young
Publisher: Springer
ISBN: 9783030825423
Category : Psychology
Languages : en
Pages : 0
Book Description
This book represents a broad integration of several major themes in psychology toward its unification. Unifying psychology is an ongoing project that has no end-point, but the present work suggests several major axes toward that end, including causality and activation-inhibition coordination. On the development side of the model building, the author has constructed an integrated lifespan stage model of development across the Piagetian cognitive and the Eriksonian socioaffective domains. The model is based on the concept of neo-stages, which mitigates standard criticisms of developmental stage models. The new work in the second half of the book extends the primary work in the first half both in terms of causality and development. Also, the area of couple work is examined from the stage perspective. Finally, new concepts related to the main themes are represented, including on the science formula, executive function, stress dysregulation disorder, inner peace, and ethics, all toward showing the rich potential of the present modeling.
Publisher: Springer
ISBN: 9783030825423
Category : Psychology
Languages : en
Pages : 0
Book Description
This book represents a broad integration of several major themes in psychology toward its unification. Unifying psychology is an ongoing project that has no end-point, but the present work suggests several major axes toward that end, including causality and activation-inhibition coordination. On the development side of the model building, the author has constructed an integrated lifespan stage model of development across the Piagetian cognitive and the Eriksonian socioaffective domains. The model is based on the concept of neo-stages, which mitigates standard criticisms of developmental stage models. The new work in the second half of the book extends the primary work in the first half both in terms of causality and development. Also, the area of couple work is examined from the stage perspective. Finally, new concepts related to the main themes are represented, including on the science formula, executive function, stress dysregulation disorder, inner peace, and ethics, all toward showing the rich potential of the present modeling.
The Oxford Handbook of Causal Reasoning
Author: Michael Waldmann
Publisher: Oxford University Press
ISBN: 0199399557
Category : Psychology
Languages : en
Pages : 769
Book Description
Causal reasoning is one of our most central cognitive competencies, enabling us to adapt to our world. Causal knowledge allows us to predict future events, or diagnose the causes of observed facts. We plan actions and solve problems using knowledge about cause-effect relations. Without our ability to discover and empirically test causal theories, we would not have made progress in various empirical sciences. The handbook brings together the leading researchers in the field of causal reasoning and offers state-of-the-art presentations of theories and research. It provides introductions of competing theories of causal reasoning, and discusses its role in various cognitive functions and domains. The final section presents research from neighboring fields.
Publisher: Oxford University Press
ISBN: 0199399557
Category : Psychology
Languages : en
Pages : 769
Book Description
Causal reasoning is one of our most central cognitive competencies, enabling us to adapt to our world. Causal knowledge allows us to predict future events, or diagnose the causes of observed facts. We plan actions and solve problems using knowledge about cause-effect relations. Without our ability to discover and empirically test causal theories, we would not have made progress in various empirical sciences. The handbook brings together the leading researchers in the field of causal reasoning and offers state-of-the-art presentations of theories and research. It provides introductions of competing theories of causal reasoning, and discusses its role in various cognitive functions and domains. The final section presents research from neighboring fields.
Elements of Causal Inference
Author: Jonas Peters
Publisher: MIT Press
ISBN: 0262037319
Category : Computers
Languages : en
Pages : 289
Book Description
A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning. The mathematization of causality is a relatively recent development, and has become increasingly important in data science and machine learning. This book offers a self-contained and concise introduction to causal models and how to learn them from data. After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems. All of these topics are discussed first in terms of two variables and then in the more general multivariate case. The bivariate case turns out to be a particularly hard problem for causal learning because there are no conditional independences as used by classical methods for solving multivariate cases. The authors consider analyzing statistical asymmetries between cause and effect to be highly instructive, and they report on their decade of intensive research into this problem. The book is accessible to readers with a background in machine learning or statistics, and can be used in graduate courses or as a reference for researchers. The text includes code snippets that can be copied and pasted, exercises, and an appendix with a summary of the most important technical concepts.
Publisher: MIT Press
ISBN: 0262037319
Category : Computers
Languages : en
Pages : 289
Book Description
A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning. The mathematization of causality is a relatively recent development, and has become increasingly important in data science and machine learning. This book offers a self-contained and concise introduction to causal models and how to learn them from data. After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems. All of these topics are discussed first in terms of two variables and then in the more general multivariate case. The bivariate case turns out to be a particularly hard problem for causal learning because there are no conditional independences as used by classical methods for solving multivariate cases. The authors consider analyzing statistical asymmetries between cause and effect to be highly instructive, and they report on their decade of intensive research into this problem. The book is accessible to readers with a background in machine learning or statistics, and can be used in graduate courses or as a reference for researchers. The text includes code snippets that can be copied and pasted, exercises, and an appendix with a summary of the most important technical concepts.
Causality
Author: Judea Pearl
Publisher: Cambridge University Press
ISBN: 052189560X
Category : Computers
Languages : en
Pages : 487
Book Description
Causality offers the first comprehensive coverage of causal analysis in many sciences, including recent advances using graphical methods. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artificial intelligence ...
Publisher: Cambridge University Press
ISBN: 052189560X
Category : Computers
Languages : en
Pages : 487
Book Description
Causality offers the first comprehensive coverage of causal analysis in many sciences, including recent advances using graphical methods. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artificial intelligence ...
Understanding Developmental Disorders
Author: John Morton
Publisher: John Wiley & Sons
ISBN: 0470694319
Category : Psychology
Languages : en
Pages : 320
Book Description
A long-awaited book from developmental disorders expert John Morton, Understanding Developmental Disorders: A Causal Modelling Approach makes sense of the many competing theories about what can go wrong with early brain development, causing a child to develop outside the normal range. Based on the idea that understanding developmental disorders requires us to talk about biological, cognitive, behavioral and environmental factors, and to talk about causal relationships among these elements. Explains what causal modelling is and how to do it. Compares different theories about particular developmental disorders using causal modelling. Will have a profound impact on research in the fields of psychology, neuroscience and medicine.
Publisher: John Wiley & Sons
ISBN: 0470694319
Category : Psychology
Languages : en
Pages : 320
Book Description
A long-awaited book from developmental disorders expert John Morton, Understanding Developmental Disorders: A Causal Modelling Approach makes sense of the many competing theories about what can go wrong with early brain development, causing a child to develop outside the normal range. Based on the idea that understanding developmental disorders requires us to talk about biological, cognitive, behavioral and environmental factors, and to talk about causal relationships among these elements. Explains what causal modelling is and how to do it. Compares different theories about particular developmental disorders using causal modelling. Will have a profound impact on research in the fields of psychology, neuroscience and medicine.
Symmetry, Causality, Mind
Author: Michael Leyton
Publisher: MIT Press
ISBN: 9780262621311
Category : Philosophy
Languages : en
Pages : 644
Book Description
In this investigation of the psychological relationship between shape and time, Leyton argues compellingly that shape is used by the mind to recover the past and as such it forms a basis for memory. Michael Leyton's arguments about the nature of perception and cognition are fascinating, exciting, and sure to be controversial. In this investigation of the psychological relationship between shape and time, Leyton argues compellingly that shape is used by the mind to recover the past and as such it forms a basis for memory. He elaborates a system of rules by which the conversion to memory takes place and presents a number of detailed case studies--in perception, linguistics, art, and even political subjugation--that support these rules. Leyton observes that the mind assigns to any shape a causal history explaining how the shape was formed. We cannot help but perceive a deformed can as a dented can. Moreover, by reducing the study of shape to the study of symmetry, he shows that symmetry is crucial to our everyday cognitive processing. Symmetry is the means by which shape is converted into memory. Perception is usually regarded as the recovery of the spatial layout of the environment. Leyton, however, shows that perception is fundamentally the extraction of time from shape. In doing so, he is able to reduce the several areas of computational vision purely to symmetry principles. Examining grammar in linguistics, he argues that a sentence is psychologically represented as a piece of causal history, an archeological relic disinterred by the listener so that the sentence reveals the past. Again through a detailed analysis of art he shows that what the viewer takes to be the experience of a painting is in fact the extraction of time from the shapes of the painting. Finally he highlights crucial aspects of the mind's attempt to recover time in examples of political subjugation.
Publisher: MIT Press
ISBN: 9780262621311
Category : Philosophy
Languages : en
Pages : 644
Book Description
In this investigation of the psychological relationship between shape and time, Leyton argues compellingly that shape is used by the mind to recover the past and as such it forms a basis for memory. Michael Leyton's arguments about the nature of perception and cognition are fascinating, exciting, and sure to be controversial. In this investigation of the psychological relationship between shape and time, Leyton argues compellingly that shape is used by the mind to recover the past and as such it forms a basis for memory. He elaborates a system of rules by which the conversion to memory takes place and presents a number of detailed case studies--in perception, linguistics, art, and even political subjugation--that support these rules. Leyton observes that the mind assigns to any shape a causal history explaining how the shape was formed. We cannot help but perceive a deformed can as a dented can. Moreover, by reducing the study of shape to the study of symmetry, he shows that symmetry is crucial to our everyday cognitive processing. Symmetry is the means by which shape is converted into memory. Perception is usually regarded as the recovery of the spatial layout of the environment. Leyton, however, shows that perception is fundamentally the extraction of time from shape. In doing so, he is able to reduce the several areas of computational vision purely to symmetry principles. Examining grammar in linguistics, he argues that a sentence is psychologically represented as a piece of causal history, an archeological relic disinterred by the listener so that the sentence reveals the past. Again through a detailed analysis of art he shows that what the viewer takes to be the experience of a painting is in fact the extraction of time from the shapes of the painting. Finally he highlights crucial aspects of the mind's attempt to recover time in examples of political subjugation.
Causality, Probability, and Medicine
Author: Donald Gillies
Publisher: Routledge
ISBN: 1317564286
Category : Philosophy
Languages : en
Pages : 248
Book Description
Why is understanding causation so important in philosophy and the sciences? Should causation be defined in terms of probability? Whilst causation plays a major role in theories and concepts of medicine, little attempt has been made to connect causation and probability with medicine itself. Causality, Probability, and Medicine is one of the first books to apply philosophical reasoning about causality to important topics and debates in medicine. Donald Gillies provides a thorough introduction to and assessment of competing theories of causality in philosophy, including action-related theories, causality and mechanisms, and causality and probability. Throughout the book he applies them to important discoveries and theories within medicine, such as germ theory; tuberculosis and cholera; smoking and heart disease; the first ever randomized controlled trial designed to test the treatment of tuberculosis; the growing area of philosophy of evidence-based medicine; and philosophy of epidemiology. This book will be of great interest to students and researchers in philosophy of science and philosophy of medicine, as well as those working in medicine, nursing and related health disciplines where a working knowledge of causality and probability is required.
Publisher: Routledge
ISBN: 1317564286
Category : Philosophy
Languages : en
Pages : 248
Book Description
Why is understanding causation so important in philosophy and the sciences? Should causation be defined in terms of probability? Whilst causation plays a major role in theories and concepts of medicine, little attempt has been made to connect causation and probability with medicine itself. Causality, Probability, and Medicine is one of the first books to apply philosophical reasoning about causality to important topics and debates in medicine. Donald Gillies provides a thorough introduction to and assessment of competing theories of causality in philosophy, including action-related theories, causality and mechanisms, and causality and probability. Throughout the book he applies them to important discoveries and theories within medicine, such as germ theory; tuberculosis and cholera; smoking and heart disease; the first ever randomized controlled trial designed to test the treatment of tuberculosis; the growing area of philosophy of evidence-based medicine; and philosophy of epidemiology. This book will be of great interest to students and researchers in philosophy of science and philosophy of medicine, as well as those working in medicine, nursing and related health disciplines where a working knowledge of causality and probability is required.
Causality and Neo-Stages in Development
Author: Gerald Young
Publisher: Springer Nature
ISBN: 303082540X
Category : Psychology
Languages : en
Pages : 460
Book Description
This book represents a broad integration of several major themes in psychology toward its unification. Unifying psychology is an ongoing project that has no end-point, but the present work suggests several major axes toward that end, including causality and activation-inhibition coordination. On the development side of the model building, the author has constructed an integrated lifespan stage model of development across the Piagetian cognitive and the Eriksonian socioaffective domains. The model is based on the concept of neo-stages, which mitigates standard criticisms of developmental stage models. The new work in the second half of the book extends the primary work in the first half both in terms of causality and development. Also, the area of couple work is examined from the stage perspective. Finally, new concepts related to the main themes are represented, including on the science formula, executive function, stress dysregulation disorder, inner peace, and ethics, all toward showing the rich potential of the present modeling.
Publisher: Springer Nature
ISBN: 303082540X
Category : Psychology
Languages : en
Pages : 460
Book Description
This book represents a broad integration of several major themes in psychology toward its unification. Unifying psychology is an ongoing project that has no end-point, but the present work suggests several major axes toward that end, including causality and activation-inhibition coordination. On the development side of the model building, the author has constructed an integrated lifespan stage model of development across the Piagetian cognitive and the Eriksonian socioaffective domains. The model is based on the concept of neo-stages, which mitigates standard criticisms of developmental stage models. The new work in the second half of the book extends the primary work in the first half both in terms of causality and development. Also, the area of couple work is examined from the stage perspective. Finally, new concepts related to the main themes are represented, including on the science formula, executive function, stress dysregulation disorder, inner peace, and ethics, all toward showing the rich potential of the present modeling.
Causal Inference
Author: Scott Cunningham
Publisher: Yale University Press
ISBN: 0300255888
Category : Business & Economics
Languages : en
Pages : 585
Book Description
An accessible, contemporary introduction to the methods for determining cause and effect in the Social Sciences “Causation versus correlation has been the basis of arguments—economic and otherwise—since the beginning of time. Causal Inference: The Mixtape uses legit real-world examples that I found genuinely thought-provoking. It’s rare that a book prompts readers to expand their outlook; this one did for me.”—Marvin Young (Young MC) Causal inference encompasses the tools that allow social scientists to determine what causes what. In a messy world, causal inference is what helps establish the causes and effects of the actions being studied—for example, the impact (or lack thereof) of increases in the minimum wage on employment, the effects of early childhood education on incarceration later in life, or the influence on economic growth of introducing malaria nets in developing regions. Scott Cunningham introduces students and practitioners to the methods necessary to arrive at meaningful answers to the questions of causation, using a range of modeling techniques and coding instructions for both the R and the Stata programming languages.
Publisher: Yale University Press
ISBN: 0300255888
Category : Business & Economics
Languages : en
Pages : 585
Book Description
An accessible, contemporary introduction to the methods for determining cause and effect in the Social Sciences “Causation versus correlation has been the basis of arguments—economic and otherwise—since the beginning of time. Causal Inference: The Mixtape uses legit real-world examples that I found genuinely thought-provoking. It’s rare that a book prompts readers to expand their outlook; this one did for me.”—Marvin Young (Young MC) Causal inference encompasses the tools that allow social scientists to determine what causes what. In a messy world, causal inference is what helps establish the causes and effects of the actions being studied—for example, the impact (or lack thereof) of increases in the minimum wage on employment, the effects of early childhood education on incarceration later in life, or the influence on economic growth of introducing malaria nets in developing regions. Scott Cunningham introduces students and practitioners to the methods necessary to arrive at meaningful answers to the questions of causation, using a range of modeling techniques and coding instructions for both the R and the Stata programming languages.
Causality in a Social World
Author: Guanglei Hong
Publisher: John Wiley & Sons
ISBN: 1119030609
Category : Mathematics
Languages : en
Pages : 443
Book Description
Causality in a Social World introduces innovative new statistical research and strategies for investigating moderated intervention effects, mediated intervention effects, and spill-over effects using experimental or quasi-experimental data. The book uses potential outcomes to define causal effects, explains and evaluates identification assumptions using application examples, and compares innovative statistical strategies with conventional analysis methods. Whilst highlighting the crucial role of good research design and the evaluation of assumptions required for identifying causal effects in the context of each application, the author demonstrates that improved statistical procedures will greatly enhance the empirical study of causal relationship theory. Applications focus on interventions designed to improve outcomes for participants who are embedded in social settings, including families, classrooms, schools, neighbourhoods, and workplaces.
Publisher: John Wiley & Sons
ISBN: 1119030609
Category : Mathematics
Languages : en
Pages : 443
Book Description
Causality in a Social World introduces innovative new statistical research and strategies for investigating moderated intervention effects, mediated intervention effects, and spill-over effects using experimental or quasi-experimental data. The book uses potential outcomes to define causal effects, explains and evaluates identification assumptions using application examples, and compares innovative statistical strategies with conventional analysis methods. Whilst highlighting the crucial role of good research design and the evaluation of assumptions required for identifying causal effects in the context of each application, the author demonstrates that improved statistical procedures will greatly enhance the empirical study of causal relationship theory. Applications focus on interventions designed to improve outcomes for participants who are embedded in social settings, including families, classrooms, schools, neighbourhoods, and workplaces.