Author: Michèle Basseville
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 568
Book Description
Presents mathematical tools and techniques for solving change detection problems in wide domains like signal processing, controlled systems and monitoring. The book covers a wide class of stochastic processes, including scalar independent observations and multidimensional dependent ARMA.
Detection of Abrupt Changes
Author: Michèle Basseville
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 568
Book Description
Presents mathematical tools and techniques for solving change detection problems in wide domains like signal processing, controlled systems and monitoring. The book covers a wide class of stochastic processes, including scalar independent observations and multidimensional dependent ARMA.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 568
Book Description
Presents mathematical tools and techniques for solving change detection problems in wide domains like signal processing, controlled systems and monitoring. The book covers a wide class of stochastic processes, including scalar independent observations and multidimensional dependent ARMA.
Quickest Detection
Author: H. Vincent Poor
Publisher: Cambridge University Press
ISBN: 9780521621045
Category : Technology & Engineering
Languages : en
Pages : 244
Book Description
The problem of detecting abrupt changes in the behavior of an observed signal or time series arises in a variety of fields, including climate modeling, finance, image analysis, and security. Quickest detection refers to real-time detection of such changes as quickly as possible after they occur. Using the framework of optimal stopping theory, this book describes the fundamentals underpinning the field, providing the background necessary to design, analyze, and understand quickest detection algorithms. For the first time the authors bring together results which were previously scattered across disparate disciplines, and provide a unified treatment of several different approaches to the quickest detection problem. This book is essential reading for anyone who wants to understand the basic statistical procedures for change detection from a fundamental viewpoint, and for those interested in theoretical questions of change detection. It is ideal for graduate students and researchers of engineering, statistics, economics, and finance.
Publisher: Cambridge University Press
ISBN: 9780521621045
Category : Technology & Engineering
Languages : en
Pages : 244
Book Description
The problem of detecting abrupt changes in the behavior of an observed signal or time series arises in a variety of fields, including climate modeling, finance, image analysis, and security. Quickest detection refers to real-time detection of such changes as quickly as possible after they occur. Using the framework of optimal stopping theory, this book describes the fundamentals underpinning the field, providing the background necessary to design, analyze, and understand quickest detection algorithms. For the first time the authors bring together results which were previously scattered across disparate disciplines, and provide a unified treatment of several different approaches to the quickest detection problem. This book is essential reading for anyone who wants to understand the basic statistical procedures for change detection from a fundamental viewpoint, and for those interested in theoretical questions of change detection. It is ideal for graduate students and researchers of engineering, statistics, economics, and finance.
Sequential Analysis
Author: Alexander Tartakovsky
Publisher: CRC Press
ISBN: 1439838216
Category : Mathematics
Languages : en
Pages : 600
Book Description
Sequential Analysis: Hypothesis Testing and Changepoint Detection systematically develops the theory of sequential hypothesis testing and quickest changepoint detection. It also describes important applications in which theoretical results can be used efficiently. The book reviews recent accomplishments in hypothesis testing and changepoint detecti
Publisher: CRC Press
ISBN: 1439838216
Category : Mathematics
Languages : en
Pages : 600
Book Description
Sequential Analysis: Hypothesis Testing and Changepoint Detection systematically develops the theory of sequential hypothesis testing and quickest changepoint detection. It also describes important applications in which theoretical results can be used efficiently. The book reviews recent accomplishments in hypothesis testing and changepoint detecti
Artificial Intelligence and Soft Computing
Author: Leszek Rutkowski
Publisher: Springer Nature
ISBN: 3030615340
Category : Computers
Languages : en
Pages : 547
Book Description
The two-volume set LNCS 12415 and 12416 constitutes the refereed proceedings of of the 19th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2020, held in Zakopane, Poland*, in October 2020. The 112 revised full papers presented were carefully reviewed and selected from 265 submissions. The papers included in the first volume are organized in the following six parts: neural networks and their applications; fuzzy systems and their applications; evolutionary algorithms and their applications; pattern classification; bioinformatics, biometrics and medical applications; artificial intelligence in modeling and simulation. The papers included in the second volume are organized in the following four parts: computer vision, image and speech analysis; data mining; various problems of artificial intelligence; agent systems, robotics and control. *The conference was held virtually due to the COVID-19 pandemic.
Publisher: Springer Nature
ISBN: 3030615340
Category : Computers
Languages : en
Pages : 547
Book Description
The two-volume set LNCS 12415 and 12416 constitutes the refereed proceedings of of the 19th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2020, held in Zakopane, Poland*, in October 2020. The 112 revised full papers presented were carefully reviewed and selected from 265 submissions. The papers included in the first volume are organized in the following six parts: neural networks and their applications; fuzzy systems and their applications; evolutionary algorithms and their applications; pattern classification; bioinformatics, biometrics and medical applications; artificial intelligence in modeling and simulation. The papers included in the second volume are organized in the following four parts: computer vision, image and speech analysis; data mining; various problems of artificial intelligence; agent systems, robotics and control. *The conference was held virtually due to the COVID-19 pandemic.
Information Visualization
Author: Chaomei Chen
Publisher: Springer Science & Business Media
ISBN: 1846285798
Category : Computers
Languages : en
Pages : 327
Book Description
Information visualization is not only about creating graphical displays of complex and latent information structures. It also contributes to a broader range of cognitive, social, and collaborative activities. This is the first book to examine information visualization from this perspective. This 2nd edition continues the unique and ambitious quest for setting information visualization and virtual environments in a unifying framework. It pays special attention to the advances made over the last 5 years and potentially fruitful directions to pursue. It is particularly updated to meet the need for practitioners. The book is a valuable source for researchers and graduate students.
Publisher: Springer Science & Business Media
ISBN: 1846285798
Category : Computers
Languages : en
Pages : 327
Book Description
Information visualization is not only about creating graphical displays of complex and latent information structures. It also contributes to a broader range of cognitive, social, and collaborative activities. This is the first book to examine information visualization from this perspective. This 2nd edition continues the unique and ambitious quest for setting information visualization and virtual environments in a unifying framework. It pays special attention to the advances made over the last 5 years and potentially fruitful directions to pursue. It is particularly updated to meet the need for practitioners. The book is a valuable source for researchers and graduate students.
Long Memory in Economics
Author: Gilles Teyssière
Publisher: Springer Science & Business Media
ISBN: 3540346252
Category : Business & Economics
Languages : en
Pages : 394
Book Description
Assembles three different strands of long memory analysis: statistical literature on the properties of, and tests for, LRD processes; mathematical literature on the stochastic processes involved; and models from economic theory providing plausible micro foundations for the occurrence of long memory in economics.
Publisher: Springer Science & Business Media
ISBN: 3540346252
Category : Business & Economics
Languages : en
Pages : 394
Book Description
Assembles three different strands of long memory analysis: statistical literature on the properties of, and tests for, LRD processes; mathematical literature on the stochastic processes involved; and models from economic theory providing plausible micro foundations for the occurrence of long memory in economics.
Sequential Change Detection and Hypothesis Testing
Author: Alexander Tartakovsky
Publisher: CRC Press
ISBN: 1498757596
Category : Mathematics
Languages : en
Pages : 321
Book Description
Statistical methods for sequential hypothesis testing and changepoint detection have applications across many fields, including quality control, biomedical engineering, communication networks, econometrics, image processing, security, etc. This book presents an overview of methodology in these related areas, providing a synthesis of research from the last few decades. The methods are illustrated through real data examples, and software is referenced where possible. The emphasis is on providing all the theoretical details in a unified framework, with pointers to new research directions.
Publisher: CRC Press
ISBN: 1498757596
Category : Mathematics
Languages : en
Pages : 321
Book Description
Statistical methods for sequential hypothesis testing and changepoint detection have applications across many fields, including quality control, biomedical engineering, communication networks, econometrics, image processing, security, etc. This book presents an overview of methodology in these related areas, providing a synthesis of research from the last few decades. The methods are illustrated through real data examples, and software is referenced where possible. The emphasis is on providing all the theoretical details in a unified framework, with pointers to new research directions.
Data Management, Analytics and Innovation
Author: Neha Sharma
Publisher: Springer Nature
ISBN: 9811393648
Category : Technology & Engineering
Languages : en
Pages : 494
Book Description
This book presents the latest findings in the areas of data management and smart computing, big data management, artificial intelligence and data analytics, along with advances in network technologies. It addresses state-of-the-art topics and discusses challenges and solutions for future development. Gathering original, unpublished contributions by scientists from around the globe, the book is mainly intended for a professional audience of researchers and practitioners in academia and industry.
Publisher: Springer Nature
ISBN: 9811393648
Category : Technology & Engineering
Languages : en
Pages : 494
Book Description
This book presents the latest findings in the areas of data management and smart computing, big data management, artificial intelligence and data analytics, along with advances in network technologies. It addresses state-of-the-art topics and discusses challenges and solutions for future development. Gathering original, unpublished contributions by scientists from around the globe, the book is mainly intended for a professional audience of researchers and practitioners in academia and industry.
Detection of Abrupt Changes in Signals and Dynamical Systems
Author: Michele Basseville
Publisher: Springer
ISBN: 9783662207512
Category : Technology & Engineering
Languages : en
Pages : 375
Book Description
Papers from a Conference Held in Paris, March 21-22, 1984
Publisher: Springer
ISBN: 9783662207512
Category : Technology & Engineering
Languages : en
Pages : 375
Book Description
Papers from a Conference Held in Paris, March 21-22, 1984
Machine Learning for Future Wireless Communications
Author: Fa-Long Luo
Publisher: John Wiley & Sons
ISBN: 1119562252
Category : Technology & Engineering
Languages : en
Pages : 490
Book Description
A comprehensive review to the theory, application and research of machine learning for future wireless communications In one single volume, Machine Learning for Future Wireless Communications provides a comprehensive and highly accessible treatment to the theory, applications and current research developments to the technology aspects related to machine learning for wireless communications and networks. The technology development of machine learning for wireless communications has grown explosively and is one of the biggest trends in related academic, research and industry communities. Deep neural networks-based machine learning technology is a promising tool to attack the big challenge in wireless communications and networks imposed by the increasing demands in terms of capacity, coverage, latency, efficiency flexibility, compatibility, quality of experience and silicon convergence. The author – a noted expert on the topic – covers a wide range of topics including system architecture and optimization, physical-layer and cross-layer processing, air interface and protocol design, beamforming and antenna configuration, network coding and slicing, cell acquisition and handover, scheduling and rate adaption, radio access control, smart proactive caching and adaptive resource allocations. Uniquely organized into three categories: Spectrum Intelligence, Transmission Intelligence and Network Intelligence, this important resource: Offers a comprehensive review of the theory, applications and current developments of machine learning for wireless communications and networks Covers a range of topics from architecture and optimization to adaptive resource allocations Reviews state-of-the-art machine learning based solutions for network coverage Includes an overview of the applications of machine learning algorithms in future wireless networks Explores flexible backhaul and front-haul, cross-layer optimization and coding, full-duplex radio, digital front-end (DFE) and radio-frequency (RF) processing Written for professional engineers, researchers, scientists, manufacturers, network operators, software developers and graduate students, Machine Learning for Future Wireless Communications presents in 21 chapters a comprehensive review of the topic authored by an expert in the field.
Publisher: John Wiley & Sons
ISBN: 1119562252
Category : Technology & Engineering
Languages : en
Pages : 490
Book Description
A comprehensive review to the theory, application and research of machine learning for future wireless communications In one single volume, Machine Learning for Future Wireless Communications provides a comprehensive and highly accessible treatment to the theory, applications and current research developments to the technology aspects related to machine learning for wireless communications and networks. The technology development of machine learning for wireless communications has grown explosively and is one of the biggest trends in related academic, research and industry communities. Deep neural networks-based machine learning technology is a promising tool to attack the big challenge in wireless communications and networks imposed by the increasing demands in terms of capacity, coverage, latency, efficiency flexibility, compatibility, quality of experience and silicon convergence. The author – a noted expert on the topic – covers a wide range of topics including system architecture and optimization, physical-layer and cross-layer processing, air interface and protocol design, beamforming and antenna configuration, network coding and slicing, cell acquisition and handover, scheduling and rate adaption, radio access control, smart proactive caching and adaptive resource allocations. Uniquely organized into three categories: Spectrum Intelligence, Transmission Intelligence and Network Intelligence, this important resource: Offers a comprehensive review of the theory, applications and current developments of machine learning for wireless communications and networks Covers a range of topics from architecture and optimization to adaptive resource allocations Reviews state-of-the-art machine learning based solutions for network coverage Includes an overview of the applications of machine learning algorithms in future wireless networks Explores flexible backhaul and front-haul, cross-layer optimization and coding, full-duplex radio, digital front-end (DFE) and radio-frequency (RF) processing Written for professional engineers, researchers, scientists, manufacturers, network operators, software developers and graduate students, Machine Learning for Future Wireless Communications presents in 21 chapters a comprehensive review of the topic authored by an expert in the field.