Designing Electrical Machines with COMSOL PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Designing Electrical Machines with COMSOL PDF full book. Access full book title Designing Electrical Machines with COMSOL by Ovidiu CRAIU. Download full books in PDF and EPUB format.

Designing Electrical Machines with COMSOL

Designing Electrical Machines with COMSOL PDF Author: Ovidiu CRAIU
Publisher: Craiu Ovidiu
ISBN: 6069608690
Category : Science
Languages : en
Pages : 172

Book Description
This book presents the author’s experience in modeling electrical machines using numerical Finite Element Method (MEF) models. Each of the studies presented in the book has specific and added complexity. Some of the FEM models were coupled with electric circuit equations, steady state analysis was completed with transient (dynamic) studies, and on occasions, mechanical equations were coupled to field-circuit formulations. For each of the applications presented, the author provides some insight regarding the more complex parts of the model implementation in COMSOL, what type of solver to use, and how to process and interpret the obtained results. Providing some screen shots from COMSOL model implementation may assist the user in developing their own similar applications.

Designing Electrical Machines with COMSOL

Designing Electrical Machines with COMSOL PDF Author: Ovidiu CRAIU
Publisher: Craiu Ovidiu
ISBN: 6069608690
Category : Science
Languages : en
Pages : 172

Book Description
This book presents the author’s experience in modeling electrical machines using numerical Finite Element Method (MEF) models. Each of the studies presented in the book has specific and added complexity. Some of the FEM models were coupled with electric circuit equations, steady state analysis was completed with transient (dynamic) studies, and on occasions, mechanical equations were coupled to field-circuit formulations. For each of the applications presented, the author provides some insight regarding the more complex parts of the model implementation in COMSOL, what type of solver to use, and how to process and interpret the obtained results. Providing some screen shots from COMSOL model implementation may assist the user in developing their own similar applications.

Introduction to Integrative Engineering

Introduction to Integrative Engineering PDF Author: Guigen Zhang
Publisher: CRC Press
ISBN: 1315388456
Category : Health & Fitness
Languages : en
Pages : 424

Book Description
This textbook is designed for an introductory course at undergraduate and graduate levels for bioengineering students. It provides a systematic way of examining bioengineering problems in a multidisciplinary computational approach. The book introduces basic concepts of multidiscipline-based computational modeling methods, provides detailed step-by-step techniques to build a model with consideration of underlying multiphysics, and discusses many important aspects of a modeling approach including results interpretation, validation, and assessment.

COMSOL5 for Engineers

COMSOL5 for Engineers PDF Author: Mehrzad Tabatabaian
Publisher: Mercury Learning and Information
ISBN: 1942270453
Category : Science
Languages : en
Pages : 437

Book Description
COMSOL5 Multiphysics® is one of the most valuable software modeling tools for engineers and scientists. This book, an updated edition of the previously published, COMSOL for Engineers, covers COMSOL5 which now includes a revolutionary tool, the Application Builder. This component enables users to build apps based on COMSOL models that can be run on almost any operating system (Windows, MAC, mobile/iOS, etc.). Designed for engineers from various disciplines, the book introduces multiphysics modeling techniques and examples accompanied by practical applications using COMSOL5.x. The main objective is to introduce readers to use COMSOL as an engineering tool for modeling, by solving examples that could become a guide for modeling similar or more complicated problems. The book provides a collection of examples and modeling guidelines through which readers can build their own models. The mathematical fundamentals, engineering principles, and design criteria are presented as integral parts of the examples. At the end of chapters are references that contain more in-depth physics, technical information, and data; these are referred to throughout the book and used in the examples. COMSOL5 for Engineers could be used to complement another text that provides background training in engineering computations and methods. Exercises are provided at the end of the text for use in adoption situations. Features: •Expands the Finite Element Method (FEM) theory and adds more examples from the original edition •Outlines the new features in COMSOL5, the graphical user interface (GUI), and how to build a COMSOL app for models •Includes apps for selected model examples-with parameterization of these models •Features new and modified, solved model examples, in addition to the models provided in the original edition •Companion disc with executable copies of each model and their related animations eBook Customers: Companion files are available for downloading with order number/proof of purchase by writing to the publisher at [email protected].

Geometry Creation and Import With COMSOL Multiphysics

Geometry Creation and Import With COMSOL Multiphysics PDF Author: Layla S. Mayboudi
Publisher: Mercury Learning and Information
ISBN: 168392214X
Category : Technology & Engineering
Languages : en
Pages : 300

Book Description
This book focuses on the geometry creation techniques for use in finite element analysis. Examples are provided as a sequence of fin designs with progressively increasing complexity. A fin was selected as it is a feature widely employed for thermal management. As the content progresses, the reader learns to create or import a geometry into a FEM tool using COMSOL Multiphysics®. The fundamentals may also be applied to other commercial packages such as ANSYS® or AbaqusTM. The content can be utilized in a variety of engineering disciplines including mechanical, aerospace, biomedical, chemical, civil, and electrical. The book provides an overview of the tools available to create and interact with the geometry. It also takes a broader look on the world of geometry, showing how geometry is a fundamental part of nature and how it is interconnected with the world around us. Features: Includes example models that enable the reader to implement conceptual material in practical scenarios with broad industrial applications Provides geometry modeling examples created with built in features of COMSOL Multiphysics® v. 5.4 or imported from other dedicated CAD tools Presents meshing examples and provides practical advice on mesh generation Includes companion files with models and custom applications created with COMSOL Multiphysics® Application Builder.

The Physics of Semiconductor Devices

The Physics of Semiconductor Devices PDF Author: R. K. Sharma
Publisher: Springer
ISBN: 3319976044
Category : Technology & Engineering
Languages : en
Pages : 1260

Book Description
This book disseminates the current knowledge of semiconductor physics and its applications across the scientific community. It is based on a biennial workshop that provides the participating research groups with a stimulating platform for interaction and collaboration with colleagues from the same scientific community. The book discusses the latest developments in the field of III-nitrides; materials & devices, compound semiconductors, VLSI technology, optoelectronics, sensors, photovoltaics, crystal growth, epitaxy and characterization, graphene and other 2D materials and organic semiconductors.

Computational Methods for the Innovative Design of Electrical Devices

Computational Methods for the Innovative Design of Electrical Devices PDF Author: Slawomir Wiak
Publisher: Springer
ISBN: 3642162258
Category : Technology & Engineering
Languages : en
Pages : 378

Book Description
Computational Methods for the Innovative Design of Electrical Devices is entirely focused on the optimal design of various classes of electrical devices. Emerging new methods, like e.g. those based on genetic algorithms, are presented and applied in the design optimization of different devices and systems. Accordingly, the solution to field analysis problems is based on the use of finite element method, and analytical methods as well. An original aspect of the book is the broad spectrum of applications in the area of electrical engineering, especially electrical machines. This way, traditional design criteria of conventional devices are revisited in a critical way, and some innovative solutions are suggested. In particular, the optimization procedures developed are oriented to three main aspects: shape design, material properties identification, machine optimal behaviour. Topics covered include: • New parallel finite-element solvers • Response surface method • Evolutionary computing • Multiobjective optimization • Swarm intelligence • MEMS applications • Identification of magnetic properties of anisotropic laminations • Neural networks for non-destructive testing • Brushless DC motors, transformers • Permanent magnet disc motors, magnetic separators • Magnetic levitation systems

Resonant MEMS

Resonant MEMS PDF Author: Oliver Brand
Publisher: John Wiley & Sons
ISBN: 352767635X
Category : Technology & Engineering
Languages : en
Pages : 512

Book Description
Part of the AMN book series, this book covers the principles, modeling and implementation as well as applications of resonant MEMS from a unified viewpoint. It starts out with the fundamental equations and phenomena that govern the behavior of resonant MEMS and then gives a detailed overview of their implementation in capacitive, piezoelectric, thermal and organic devices, complemented by chapters addressing the packaging of the devices and their stability. The last part of the book is devoted to the cutting-edge applications of resonant MEMS such as inertial, chemical and biosensors, fluid properties sensors, timing devices and energy harvesting systems.

Proceedings of the 6th International Conference on Industrial Engineering (ICIE 2020)

Proceedings of the 6th International Conference on Industrial Engineering (ICIE 2020) PDF Author: Andrey A. Radionov
Publisher: Springer Nature
ISBN: 3030548147
Category : Technology & Engineering
Languages : en
Pages : 1296

Book Description
This book highlights recent findings in industrial, manufacturing and mechanical engineering, and provides an overview of the state of the art in these fields, mainly in Russia and Eastern Europe. A broad range of topics and issues in modern engineering are discussed, including the dynamics of machines and working processes, friction, wear and lubrication in machines, surface transport and technological machines, manufacturing engineering of industrial facilities, materials engineering, metallurgy, control systems and their industrial applications, industrial mechatronics, automation and robotics. The book gathers selected papers presented at the 6th International Conference on Industrial Engineering (ICIE), held in Sochi, Russia in May 2020. The authors are experts in various fields of engineering, and all papers have been carefully reviewed. Given its scope, the book will be of interest to a wide readership, including mechanical and production engineers, lecturers in engineering disciplines, and engineering graduates.

Design of Rotating Electrical Machines

Design of Rotating Electrical Machines PDF Author: Juha Pyrhonen
Publisher: John Wiley & Sons
ISBN: 1118701658
Category : Technology & Engineering
Languages : en
Pages : 612

Book Description
In one complete volume, this essential reference presents an in-depth overview of the theoretical principles and techniques of electrical machine design. This timely new edition offers up-to-date theory and guidelines for the design of electrical machines, taking into account recent advances in permanent magnet machines as well as synchronous reluctance machines. New coverage includes: Brand new material on the ecological impact of the motors, covering the eco-design principles of rotating electrical machines An expanded section on the design of permanent magnet synchronous machines, now reporting on the design of tooth-coil, high-torque permanent magnet machines and their properties Large updates and new material on synchronous reluctance machines, air-gap inductance, losses in and resistivity of permanent magnets (PM), operating point of loaded PM circuit, PM machine design, and minimizing the losses in electrical machines> End-of-chapter exercises and new direct design examples with methods and solutions to real design problems> A supplementary website hosts two machine design examples created with MATHCAD: rotor surface magnet permanent magnet machine and squirrel cage induction machine calculations. Also a MATLAB code for optimizing the design of an induction motor is provided Outlining a step-by-step sequence of machine design, this book enables electrical machine designers to design rotating electrical machines. With a thorough treatment of all existing and emerging technologies in the field, it is a useful manual for professionals working in the diagnosis of electrical machines and drives. A rigorous introduction to the theoretical principles and techniques makes the book invaluable to senior electrical engineering students, postgraduates, researchers and university lecturers involved in electrical drives technology and electromechanical energy conversion.

Optical Waveguides and Devices Modeling and Visualization Using COMSOL Multiphysics Volume 1

Optical Waveguides and Devices Modeling and Visualization Using COMSOL Multiphysics Volume 1 PDF Author: Hee Lim
Publisher: Createspace Independent Publishing Platform
ISBN: 9781729590461
Category :
Languages : en
Pages : 456

Book Description
This pictorial manuscript is a step-by-step graphical illustrations for waveguides and devices modeling and computational physics simulation using COMSOL Multiphysics with Ray Optics, Wave Optics and AC/DC Electrostatics modules. All the example models investigated and visualized with the help of Finite Element Analysis are referenced from the standard USA undergraduate text on Optical Guided Waves and Devices by Richard Syms and John Cozens. The simulations include the use of geometrical ray tracings for point source and full electromagnetic waves source employing the Maxwell's wave equations for plane wave input. Both 2D and 3D simulation results will help in visualize the electromagnetic field propagating inside the waveguides and devices. Readers without fundamental handle on optics modeling are suggested to read the Optics Modeling and Visualization with COMSOL Multiphysics: A step by step graphical instruction manuscripts for detailed discussion. These models may be expanded to post-graduate research and industrial photonics waveguides and devices development. There are 46 chapters of different 2D and 3D optical waveguides & devices structures modeled and simulated in Volume 1 and 2. Volume 1 models include 3D single mode optical fiber, planar waveguide, channel waveguide, longitudinal and transverse phase modulator, surface plasmon, optical square waveguide, tapered waveguide, FTIR beamsplitter in ray tracing and electromagnetic wave solvers, full prism coupler, halved prism coupler, plano convex overlay lens, overlay Luneburg lens, geodesic lens with control setup for resulted electric field comparison, corrugated gratings, transmission and reflection gratings, chirped grating lens, beam expander grating, grating coupler, chirped grating coupler, buried channel waveguide. Volume 2 models continue with the ridge channel waveguide, strip loaded channel waveguide, GaAs GaAlAs planar waveguide, GaAs GaAlAs heterostructure waveguide, radiation leaks at fiber bend, radiation leaks at waveguide bend, c-axis Calcite polarizer waveguide, integrated optic normal reflector, horn channel waveguide, Y-Junction waveguide, optical phase modulator, cut off modulator, electro optic Mach-Zehnder interferometer waveguide, parallel coupling waveguide, electro optic directional coupler, single polished fiber directional coupler, double polished fiber directional coupler, tunable-coupling strength of polished double fiber coupler, cross sectional coaxial fiber coupler, 2D directional coupler with tapered coupling, corrugated reflection gratings, optical fiber grating on half polished fiber coupler, and track-changing reflector with grating assisted-coupling fiber.