Author: Odd M. Faltinsen
Publisher: Cambridge University Press
ISBN: 1139447939
Category : Technology & Engineering
Languages : en
Pages : 490
Book Description
Hydrodynamics of High-Speed Marine Vehicles, first published in 2006, discusses the three main categories of high-speed marine vehicles - vessels supported by submerged hulls, air cushions or foils. The wave environment, resistance, propulsion, seakeeping, sea loads and manoeuvring are extensively covered based on rational and simplified methods. Links to automatic control and structural mechanics are emphasized. A detailed description of waterjet propulsion is given and the effect of water depth on wash, resistance, sinkage and trim is discussed. Chapter topics include resistance and wash; slamming; air cushion-supported vessels, including a detailed discussion of wave-excited resonant oscillations in air cushion; and hydrofoil vessels. The book contains numerous illustrations, examples and exercises.
Hydrodynamics of High-Speed Marine Vehicles
Twenty-First Symposium on Naval Hydrodynamics
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309058791
Category : Science
Languages : en
Pages : 1100
Book Description
Publisher: National Academies Press
ISBN: 0309058791
Category : Science
Languages : en
Pages : 1100
Book Description
The Rudder
U.S. Government Research Reports
U.S. Government Research Reports
Twenty-Second Symposium on Naval Hydrodynamics
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309065372
Category : Science
Languages : en
Pages : 1039
Book Description
The Twenty-Second Symposium on Naval Hydrodynamics was held in Washington, D.C., from August 9-14, 1998. It coincided with the 100th anniversary of the David Taylor Model Basin. This international symposium was organized jointly by the Office of Naval Research (Mechanics and Energy Conversion S&T Division), the National Research Council (Naval Studies Board), and the Naval Surface Warfare Center, Carderock Division (David Taylor Model Basin). This biennial symposium promotes the technical exchange of naval research developments of common interest to all the countries of the world. The forum encourages both formal and informal discussion of the presented papers, and the occasion provides an opportunity for direct communication between international peers.
Publisher: National Academies Press
ISBN: 0309065372
Category : Science
Languages : en
Pages : 1039
Book Description
The Twenty-Second Symposium on Naval Hydrodynamics was held in Washington, D.C., from August 9-14, 1998. It coincided with the 100th anniversary of the David Taylor Model Basin. This international symposium was organized jointly by the Office of Naval Research (Mechanics and Energy Conversion S&T Division), the National Research Council (Naval Studies Board), and the Naval Surface Warfare Center, Carderock Division (David Taylor Model Basin). This biennial symposium promotes the technical exchange of naval research developments of common interest to all the countries of the world. The forum encourages both formal and informal discussion of the presented papers, and the occasion provides an opportunity for direct communication between international peers.
Verification and Validation in Computational Science and Engineering
Author: Patrick J. Roache
Publisher:
ISBN: 9780913478080
Category : Algorithms
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9780913478080
Category : Algorithms
Languages : en
Pages : 0
Book Description
Practical Ship Design
Author: D.G.M. Watson
Publisher: Elsevier
ISBN: 9780080440545
Category : Business & Economics
Languages : en
Pages : 564
Book Description
The ever-growing demand for commercial activities at sea has meant that ships are rapidly developing and that the rules governing their construction and operation are changing. Practical Ship Design records these changes, their outcomes and the reasoning behind them. It deals with every aspect of ship design and handles a wide range of both merchant ships and naval ships with authority. It provides coverage of cargo ships and passenger ships, tugs, dredgers and other service craft. It also includes concept design, detail design, structural design, hydrodynamics design, the effect of regulations, the preparation of specifications and matters of costs and economics. Drawing on the author's extensive practical experience, Practical Ship Design is likely to interest everybody involved in the design, construction, repair and operation of ships. Students and the most experienced professionals will all benefit from the book's vast store of design data and its conclusions and recommendations.
Publisher: Elsevier
ISBN: 9780080440545
Category : Business & Economics
Languages : en
Pages : 564
Book Description
The ever-growing demand for commercial activities at sea has meant that ships are rapidly developing and that the rules governing their construction and operation are changing. Practical Ship Design records these changes, their outcomes and the reasoning behind them. It deals with every aspect of ship design and handles a wide range of both merchant ships and naval ships with authority. It provides coverage of cargo ships and passenger ships, tugs, dredgers and other service craft. It also includes concept design, detail design, structural design, hydrodynamics design, the effect of regulations, the preparation of specifications and matters of costs and economics. Drawing on the author's extensive practical experience, Practical Ship Design is likely to interest everybody involved in the design, construction, repair and operation of ships. Students and the most experienced professionals will all benefit from the book's vast store of design data and its conclusions and recommendations.
Monthly Catalog of United States Government Publications
WIG Craft and Ekranoplan
Author: Liang Yun
Publisher: Springer Science & Business Media
ISBN: 144190042X
Category : Technology & Engineering
Languages : en
Pages : 459
Book Description
In the last half-century, high-speed water transportation has developed rapidly. Novel high-performance marine vehicles, such as the air cushion vehicle (ACV), surface effect ship (SES), high-speed monohull craft (MHC), catamaran (CAT), hydrofoil craft (HYC), wave-piercing craft (WPC) and small water area twin hull craft (SWATH) have all developed as concepts, achieving varying degrees of commercial and military success. Prototype ACV and SES have achieved speeds of 100 knots in at calm con- tions; however, the normal cruising speed for commercial operations has remained around 35–50 knots. This is partly due to increased drag in an average coastal s- way where such craft operate services and partly due to limitations of the propulsion systems for such craft. Water jets and water propellers face limitations due to c- itation at high speed, for example. SWATH are designed for reduced motions in a seaway, but the hull form is not a low drag form suitable for high-speed operation. So that seems to lead to a problem – maintain water contact and either water propulsion systems run out of power or craft motions and speed loss are a problem in higher seastates. The only way to higher speed would appear to be to disconnect completely from the water surface. You, the reader, might respond with a question about racing hydroplanes, which manage speeds of above 200 kph. Yes, true, but the power-to-weight ratio is extremely high on such racing machines and not economic if translated into a useful commercial vessel.
Publisher: Springer Science & Business Media
ISBN: 144190042X
Category : Technology & Engineering
Languages : en
Pages : 459
Book Description
In the last half-century, high-speed water transportation has developed rapidly. Novel high-performance marine vehicles, such as the air cushion vehicle (ACV), surface effect ship (SES), high-speed monohull craft (MHC), catamaran (CAT), hydrofoil craft (HYC), wave-piercing craft (WPC) and small water area twin hull craft (SWATH) have all developed as concepts, achieving varying degrees of commercial and military success. Prototype ACV and SES have achieved speeds of 100 knots in at calm con- tions; however, the normal cruising speed for commercial operations has remained around 35–50 knots. This is partly due to increased drag in an average coastal s- way where such craft operate services and partly due to limitations of the propulsion systems for such craft. Water jets and water propellers face limitations due to c- itation at high speed, for example. SWATH are designed for reduced motions in a seaway, but the hull form is not a low drag form suitable for high-speed operation. So that seems to lead to a problem – maintain water contact and either water propulsion systems run out of power or craft motions and speed loss are a problem in higher seastates. The only way to higher speed would appear to be to disconnect completely from the water surface. You, the reader, might respond with a question about racing hydroplanes, which manage speeds of above 200 kph. Yes, true, but the power-to-weight ratio is extremely high on such racing machines and not economic if translated into a useful commercial vessel.