Design of a 6.78 MHz Wireless Power Transfer System for Implantable Medical Devices PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Design of a 6.78 MHz Wireless Power Transfer System for Implantable Medical Devices PDF full book. Access full book title Design of a 6.78 MHz Wireless Power Transfer System for Implantable Medical Devices by . Download full books in PDF and EPUB format.

Design of a 6.78 MHz Wireless Power Transfer System for Implantable Medical Devices

Design of a 6.78 MHz Wireless Power Transfer System for Implantable Medical Devices PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Design of a 6.78 MHz Wireless Power Transfer System for Implantable Medical Devices

Design of a 6.78 MHz Wireless Power Transfer System for Implantable Medical Devices PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


A 6.78 MHz Long-Distance and Wide Loading Range Wireless Power Transfer System for Implantable Medical Devices

A 6.78 MHz Long-Distance and Wide Loading Range Wireless Power Transfer System for Implantable Medical Devices PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Wireless Power Transfer Design For Small Implantable Medical Devices

Wireless Power Transfer Design For Small Implantable Medical Devices PDF Author: Jeetkumar Mehta
Publisher: LAP Lambert Academic Publishing
ISBN: 9783659345906
Category :
Languages : en
Pages : 64

Book Description
Last few decades has shown tremendous interest and growth in wireless technology. It was Tesla's dream to trasnfer power wirelessly from one end to other end of the world. Until few decades back it was a topic of interest for few. But this days even major and high tech companies have drawn their attention towards this technology. Apple, Samsung are few of the companies to name who wants to use wireless charging technique for their portable devices. With this work we have tried to explore this wireless technology using magnetic resonance coupling for health care such as implantable devices. The main focus was to start a project to design a receiver that can charge implantable devices such as pacemaker wirelessly. Imagine a patient who doesn't need to undergo heart surgery just to replace batteries for pacemaker, this would turn out to be a boon for humanity. The work has been carried out using software design tool HFSS and also hardware was designed accordingly. Simulation and real time measurements were carried out on pork muscle and compared. Simulation and practical measurements showed close proximity to a greater extent.

Wireless Power Transfer for Combined Sensing and Stimulation in Implantable Biomedical Devices

Wireless Power Transfer for Combined Sensing and Stimulation in Implantable Biomedical Devices PDF Author: Esmaeel Maghsoudloo
Publisher:
ISBN:
Category :
Languages : en
Pages : 102

Book Description
Currently, there is a high demand for Headstage and implantable integrated microsystems to study the brain activity of freely moving laboratory mice. Such devices can interface with the central nervous system in both electrical and optical paradigms for stimulating and monitoring neural circuits, which is critical to discover new drugs and therapies against neurological disorders like epilepsy, depression, and Parkinson's disease. Since the implantable systems cannot use a battery with a large capacity as a primary source of energy in long-term experiments, the power consumption of the implantable device is one of the leading challenges of these designs. The first part of this research includes our proposed solution for decreasing the power consumption of the implantable microcircuits. We propose a novel level shifter circuit which converting subthreshold signal levels to super-threshold signal levels at high-speed using ultra low power and a small silicon area, making it well-suited for low-power applications such as wireless sensor networks and implantable medical devices. The proposed circuit introduces a new voltage level shifter topology employing a level-shifting capacitor to increase the range of conversion voltages, while significantly reducing the conversion delay. The proposed circuit achieves a shorter propagation delay and a smaller silicon area for a given operating frequency and power consumption compared to other circuit solutions. Measurement results are presented for the proposed circuit fabricated in a 0.18-mm TSMC CMOS process. The presented circuit can convert a wide range of the input voltages from 330 mV to 1.8 V, and operate over a frequency range of 100-Hz to 100-MHz. It has a propagation delay of 29 ns, and power consumption of 61.5 nW for input signals 0.4 V, at a frequency of 500-kHz, outperforming previous designs. The second part of this research includes our proposed wireless power transfer systems for optogenetic applications. Optogenetics is the combination of the genetic and optical method of excitation, recording, and control of the biological neurons. This system combines multiple technologies such as MEMS and microelectronics to collect and transmit the neuronal signals and to activate an optical stimulator through a wireless link. Since optical stimulators consume more power than electrical stimulators, the interface employs induction power transmission using innovative means instead of the battery with the small capacity as a power source.

Wireless Power Transfer

Wireless Power Transfer PDF Author: Johnson I. Agbinya
Publisher: CRC Press
ISBN: 1000793338
Category : Technology & Engineering
Languages : en
Pages : 767

Book Description
Wireless Power Transfer is the second edition of a well received first book, which published in 2012. It represents the state-of-the-art at the time of writing, and addresses a unique subject of great international interest in terms of research. Most of the chapters are contributed by the main author, though as in the first edition several chapters are contributed by other authors. The authors of the various chapters are experts in their own right on the specific topics within wireless energy transfer. Compared to the first edition, this new edition is more comprehensive in terms of the concepts discussed, and the range of current industrial applications which are presented, such as those of magnetic induction. From the eleven chapters of the first edtion, this second edition has expanded to twenty chapters. More chapters on the theoretical foundations and applications have been included. This new edition also contains chapters which deal with techniques for reducing power losses in wireless power transfer systems. In this regard, specific chapters discuss impedance matching methods, frequency splitting and how to deploy systems based on frequency splitting. A new chapter on multi-dimensional wireless power transfer has also been added. The design of wireless power transfer systems based on bandpass filtering approach has been included, in addition to the two techniques using couple mode theory and electronic circuits.The book has retained chapters on how to increase efficiency of power conversion and induction, and also how to control the power systems. Furthermore, detailed techniques for power relay, including applications, which were also discussed in the first edition, have been updated and kept. The book is written in a progressive manner, with a knowledge of the first chapters making it easier to understand the later chapters. Most of the underlying theories covered in the book are clearly relevant to inductive near field communications, robotic control, robotic propulsion techniques, induction heating and cooking and a range of mechatronic systems.

Compact Size Wireless Power Transfer Using Defected Ground Structures

Compact Size Wireless Power Transfer Using Defected Ground Structures PDF Author: Sherif Hekal
Publisher: Springer
ISBN: 9811380473
Category : Technology & Engineering
Languages : en
Pages : 91

Book Description
This book addresses the design challenges in near-field wireless power transfer (WPT) systems, such as high efficiency, compact size, and long transmission range. It presents new low-profile designs for the TX/RX structures using different shapes of defected ground structures (DGS) like (H, semi-H, and spiral-strips DGS). Most near-field WPT systems depend on magnetic resonant coupling (MRC) using 3-D wire loops or helical antennas, which are often bulky. This, in turn, poses technical difficulties in their application in small electronic devices and biomedical implants. To obtain compact structures, printed spiral coils (PSCs) have recently emerged as a candidate for low-profile WPT systems. However, most of the MRC WPT systems that use PSCs have limitations in the maximum achievable efficiency due to the feeding method. Inductive feeding constrains the geometric dimensions of the main transmitting (TX)/receiving (RX) resonators, which do not achieve the maximum achievable unloaded quality factor. This book will be of interest to researchers and professionals working on WPT-related problems.

Wireless Power Transfer for Medical Microsystems

Wireless Power Transfer for Medical Microsystems PDF Author: Tianjia Sun
Publisher: Springer
ISBN: 9781461477013
Category : Technology & Engineering
Languages : en
Pages : 0

Book Description
This book provides an in-depth introduction to the newest technologies for designing wireless power transfer systems for medical applications. The authors present a systematic classification of the various types of wireless power transfer, with a focus on inductive power coupling. Readers will learn to overcome many challenges faced in the design a wirelessly powered implant, such as power transfer efficiency, power stability, and the size of power antennas and circuits. This book focuses exclusively on medical applications of the technology and a batteryless capsule endoscopy system and other, real wirelessly powered systems are used as examples of the techniques described.

High-performance Wireless Power and Data Transfer Interface for Implantable Medical Devices

High-performance Wireless Power and Data Transfer Interface for Implantable Medical Devices PDF Author: Seyed Abdollah Mirbozorgi
Publisher:
ISBN:
Category :
Languages : en
Pages : 121

Book Description
In recent years, there has been major progress on implantable biomedical systems that support most of the functionalities of wireless implantable devices. Nevertheless, these devices remain mostly restricted to be commercialized, in part due to weakness of a straightforward design to support the required functionalities, limitation on miniaturization, and lack of a reliable low-power high data rate interface between implants and external devices. This research provides novel strategies on the design of implantable biomedical devices that addresses these limitations by presenting analysis and techniques for wireless power transfer and efficient data transfer. The first part of this research includes our proposed novel resonance-based multicoil inductive power link structure with uniform power distribution to wirelessly power up smart animal research systems and implanted medical devices with high power efficiency and free positioning capability. The proposed structure consists of a multicoil resonance inductive link, which primary resonator array is made of several identical resonators enclosed in a scalable array of overlapping square coils that are connected in parallel and arranged in power surface (2D) and power chamber (3D) configurations. The proposed chamber uses two arrays of primary resonators, facing each other, and connected in parallel to achieve uniform power distribution in 3D. Each surface includes 9 overlapped coils connected in parallel and implemented into two layers of FR4 printed circuit board. The chamber features a natural power localization mechanism, which simplifies its implementation and eases its operation by avoiding the need for active detection of the load location and power control mechanisms. A single power surface based on the proposed approach can provide a power transfer efficiency (PTE) of 69% and a power delivered to the load (PDL) of 120 mW, for a separation distance of 4 cm, whereas the complete chamber prototype provides a uniform PTE of 59% and a PDL of 100 mW in 3D, everywhere inside the chamber with a chamber size of 27×27×16 cm3. The second part of this research includes our proposed novel, fully-integrated, low-power fullduplex transceiver (FDT) to support bi-directional neural interfacing applications (stimulating and recording) with asymmetric data rates: higher rates are required for recording (uplink signals) than stimulation (downlink signals). The transmitter (TX) and receiver (RX) share a single antenna to reduce implant size. The TX uses impulse radio ultra-wide band (IR-UWB) based on an edge combining approach, and the RX uses a novel 2.4-GHz on-off keying (OOK) receiver. Proper isolation (> 20 dB) between the TX and RX path is implemented 1) by shaping the transmitted pulses to fall within the unregulated UWB spectrum (3.1-7 GHz), and 2) by space-efficient filtering (avoiding a circulator or diplexer) of the downlink OOK spectrum in the RX low-noise amplifier (LNA). The UWB 3.1-7 GHz transmitter using OOK and binary phase shift keying (BPSK) modulations at only 10.8 pJ/bit. The proposed FDT provides dual band 500 Mbps TX uplink data rate and 100 Mbps RX downlink data rate. It is fully integrated on standard TSMC 0.18 nm CMOS within a total size of 0.8 mm2. The total power consumption measured 10.4 mW (5 mW for RX and 5.4 mW for TX at the rate of 500 Mbps).

Wireless Power Transfer for Implantable Biomedical Devices Using Adjustable Magnetic Resonance

Wireless Power Transfer for Implantable Biomedical Devices Using Adjustable Magnetic Resonance PDF Author: Basem M. Badr
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Rodents are essential models for research on fundamental neurological processing and for testing of therapeutic manipulations including drug efficacy studies. Telemetry acquisition from rodents is important in biomedical research and requires a long-term powering method. A wireless power transfer (WPT) scheme is desirable to power the telemetric devices for rodents. This dissertation investigates a WPT system to deliver power from a stationary source (primary coil) to a moving telemetric device (secondary coil) via magnetic resonant coupling. The continuously changing orientation of the rodent leads to coupling loss/problems between the primary and secondary coils, presenting a major challenge. We designed a novel secondary circuit employing ferrite rods placed at specific locations and orientations within the coil. The simulation and experimental results show a significant increase of power transfer using our ferrite arrangement, with improved coupling at most orientations. The use of a medium-ferrite-angled (4MFA) configuration further improved power transfer. Initially, we designed a piezoelectric-based device to harvest the kinetic energy available from the natural movement of the rodent; however, the harvested power was insufficient to power the telemetric devices for the rodents. After designing our 4MFA device, we designed a novel wireless measurement system (WMS) to collect real-time performance data from the secondary circuit while testing WPT systems. This prevents the measurement errors associated with voltage/current probes or coaxial cables placed directly into the primary magnetic field. The maximum total efficiency of our novel WPT is 14.1% when the orientation of the 4MFA is parallel to the primary electromagnetic field, and a current of 2.0 A (peak-to-peak) is applied to the primary coil. We design a novel controllable WPT system to facilitate the use of multiple secondary circuits (telemetric devices) to operate within a single primary coil. Each telemetric device can tune or detune its resonant frequency independently of the others using its internal control algorithm.

Wireless Power Supply for Implantable Biomedical Devices

Wireless Power Supply for Implantable Biomedical Devices PDF Author: Ping Si
Publisher:
ISBN:
Category : Electric current converters
Languages : en
Pages : 218

Book Description