Design and Implementation of a 200mm 3C-SiC CVD Reactor PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Design and Implementation of a 200mm 3C-SiC CVD Reactor PDF full book. Access full book title Design and Implementation of a 200mm 3C-SiC CVD Reactor by Christopher L. Frewin. Download full books in PDF and EPUB format.

Design and Implementation of a 200mm 3C-SiC CVD Reactor

Design and Implementation of a 200mm 3C-SiC CVD Reactor PDF Author: Christopher L. Frewin
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
ABSTRACT: Silicon carbide, SiC, is a semiconductor material which has many diverse uses in many of today's leading technologies. The wide band-gap aspect of the material has been utilized to create power and high frequency electronics, its physical hardness enables its use for MEMS devices, and the biological compatibility make perfect for utilization in medical applications. SiC is not a chemical compound normally found in nature and must be artificially generated. One of the methods used for the creation of single crystal, high quality SiC material is provided through the use of a chemical vapor deposition reactor. The University of South Florida currently has a horizontal hot-wallLPCVD reactor used by Dr. S.E. Saddow and his group to grow epitaxial SiC material for research grants by ONR and ARL. These agencies have commissioned the construction of a second LPCVD reactor for the primary purpose of growing 3C-SiC, a specific SiC crystal polytype, and this work describes the fabrication of the new reactor, MF2. This reactor was designed using the first reactor, MF1, as a template, but the design was modified to better facilitate single crystalline growth. The environment of the reactor is a very important consideration for crystal growth, and slight variations can cause critical defect incorporation into the crystal lattice. Many conditioning runs were required to facilitate the epitaxial growth of the different polytypes of SiC, and constant switching of the primary hot-zone required for the growth of hexagonal 4H-SiC and 6H-SiC to the hot zone required for 3C-SiC consumed precious resources and time. The new reactor uses a single primary control to monitor the three most important environmental concerns; hot-zone temperature, gaseous flow, and chamber pressure. The new reactor has been designed to use 100 mm Si substrates instead of the 50mm Si substrate size currently in use by MF1. The construction, testing, and 3C-SiC epitaxial growth on Si substrate capability of a 200 mm 3C-SiC hot-wall LPCVD reactor are demonstrated through this work.

Design and Implementation of a 200mm 3C-SiC CVD Reactor

Design and Implementation of a 200mm 3C-SiC CVD Reactor PDF Author: Christopher L. Frewin
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
ABSTRACT: Silicon carbide, SiC, is a semiconductor material which has many diverse uses in many of today's leading technologies. The wide band-gap aspect of the material has been utilized to create power and high frequency electronics, its physical hardness enables its use for MEMS devices, and the biological compatibility make perfect for utilization in medical applications. SiC is not a chemical compound normally found in nature and must be artificially generated. One of the methods used for the creation of single crystal, high quality SiC material is provided through the use of a chemical vapor deposition reactor. The University of South Florida currently has a horizontal hot-wallLPCVD reactor used by Dr. S.E. Saddow and his group to grow epitaxial SiC material for research grants by ONR and ARL. These agencies have commissioned the construction of a second LPCVD reactor for the primary purpose of growing 3C-SiC, a specific SiC crystal polytype, and this work describes the fabrication of the new reactor, MF2. This reactor was designed using the first reactor, MF1, as a template, but the design was modified to better facilitate single crystalline growth. The environment of the reactor is a very important consideration for crystal growth, and slight variations can cause critical defect incorporation into the crystal lattice. Many conditioning runs were required to facilitate the epitaxial growth of the different polytypes of SiC, and constant switching of the primary hot-zone required for the growth of hexagonal 4H-SiC and 6H-SiC to the hot zone required for 3C-SiC consumed precious resources and time. The new reactor uses a single primary control to monitor the three most important environmental concerns; hot-zone temperature, gaseous flow, and chamber pressure. The new reactor has been designed to use 100 mm Si substrates instead of the 50mm Si substrate size currently in use by MF1. The construction, testing, and 3C-SiC epitaxial growth on Si substrate capability of a 200 mm 3C-SiC hot-wall LPCVD reactor are demonstrated through this work.

Growth of 3C-SiC Via a Hot-wall CVD Reactor

Growth of 3C-SiC Via a Hot-wall CVD Reactor PDF Author: Suzie Harvey
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
ABSTRACT: The heteroepitaxial growth of cubic silicon carbide (3C-SiC) on silicon (Si) substrates at high growth rates, via a horizontal hot-wall chemical vapor deposition (CVD) reactor, has been achieved. The final growth process was developed in three stages; an initial "baseline" development stage, an optimization stage, and a large area growth stage. In all cases the growth was conducted using a two step, carbonization plus growth, process. During carbonization, the surface of the Si is converted to 3C-SiC, which helps to minimize the stress in the growing crystal. Propane (C3H8) and silane (SiH4), diluted in hydrogen (H2), were used as the carbon and silicon source, respectively. A deposition rate of approximately 10 um/h was established during the baseline process. Once the baseline process proved to be repeatable, optimization of the process began. Through variations in temperature, pressure, and the Si/C ratio, thick 3C-SiC films (up to 22 um thick) and high deposition rates (up to 30 um/h) were obtained. The optimized process was then applied to growth on 50 mm diameter Si(100) wafers. The grown 3C-SiC films were analyzed using a variety of characterization techniques. The thickness of the films was assessed through Fourier Transform infrared (FTIR) spectroscopy, and confirmed by cross-section scanning electron microscopy (SEM). The SEM cross-sections were also used to investigate the 3C-SiC/Si interface. The surface morphology of the films was inspected via Nomarsky interference optical microscopy, atomic force microscopy (AFM), and SEM. The crystalline quality of the films was determined through X-ray diffraction (XRD) and low-temperature photoluminescence (LTPL) analysis. A mercury probe was used to make non-contact CV/IV measurements and determine the film doping.

Design and Development of a Low Pressure Chemical Vapor Deposition Reactor for Growth of Cubic (3C) Silicon Carbide

Design and Development of a Low Pressure Chemical Vapor Deposition Reactor for Growth of Cubic (3C) Silicon Carbide PDF Author: Michael Peter Orthner
Publisher:
ISBN:
Category : Chemical reactors
Languages : en
Pages : 248

Book Description


Fundamentals of Silicon Carbide Technology

Fundamentals of Silicon Carbide Technology PDF Author: Tsunenobu Kimoto
Publisher: John Wiley & Sons
ISBN: 1118313526
Category : Technology & Engineering
Languages : en
Pages : 565

Book Description
A comprehensive introduction and up-to-date reference to SiC power semiconductor devices covering topics from material properties to applications Based on a number of breakthroughs in SiC material science and fabrication technology in the 1980s and 1990s, the first SiC Schottky barrier diodes (SBDs) were released as commercial products in 2001. The SiC SBD market has grown significantly since that time, and SBDs are now used in a variety of power systems, particularly switch-mode power supplies and motor controls. SiC power MOSFETs entered commercial production in 2011, providing rugged, high-efficiency switches for high-frequency power systems. In this wide-ranging book, the authors draw on their considerable experience to present both an introduction to SiC materials, devices, and applications and an in-depth reference for scientists and engineers working in this fast-moving field. Fundamentals of Silicon Carbide Technology covers basic properties of SiC materials, processing technology, theory and analysis of practical devices, and an overview of the most important systems applications. Specifically included are: A complete discussion of SiC material properties, bulk crystal growth, epitaxial growth, device fabrication technology, and characterization techniques. Device physics and operating equations for Schottky diodes, pin diodes, JBS/MPS diodes, JFETs, MOSFETs, BJTs, IGBTs, and thyristors. A survey of power electronics applications, including switch-mode power supplies, motor drives, power converters for electric vehicles, and converters for renewable energy sources. Coverage of special applications, including microwave devices, high-temperature electronics, and rugged sensors. Fully illustrated throughout, the text is written by recognized experts with over 45 years of combined experience in SiC research and development. This book is intended for graduate students and researchers in crystal growth, material science, and semiconductor device technology. The book is also useful for design engineers, application engineers, and product managers in areas such as power supplies, converter and inverter design, electric vehicle technology, high-temperature electronics, sensors, and smart grid technology.

Advancing Silicon Carbide Electronics Technology II

Advancing Silicon Carbide Electronics Technology II PDF Author: Konstantinos Zekentes
Publisher: Materials Research Forum LLC
ISBN: 164490067X
Category : Technology & Engineering
Languages : en
Pages : 292

Book Description
The book presents an in-depth review and analysis of Silicon Carbide device processing. The main topics are: (1) Silicon Carbide Discovery, Properties and Technology, (2) Processing and Application of Dielectrics in Silicon Carbide Devices, (3) Doping by Ion Implantation, (4) Plasma Etching and (5) Fabrication of Silicon Carbide Nanostructures and Related Devices. The book is also suited as supplementary textbook for graduate courses. Keywords: Silicon Carbide, SiC, Technology, Processing, Semiconductor Devices, Material Properties, Polytypism, Thermal Oxidation, Post Oxidation Annealing, Surface Passivation, Dielectric Deposition, Field Effect Mobility, Ion Implantation, Post Implantation Annealing, Channeling, Surface Roughness, Dry Etching, Plasma Etching, Ion Etching, Sputtering, Chemical Etching, Plasma Chemistry, Micromasking, Microtrenching, Nanocrystal, Nanowire, Nanotube, Nanopillar, Nanoelectromechanical Systems (NEMS).

Atomic Layer Deposition for Semiconductors

Atomic Layer Deposition for Semiconductors PDF Author: Cheol Seong Hwang
Publisher: Springer Science & Business Media
ISBN: 146148054X
Category : Science
Languages : en
Pages : 266

Book Description
Offering thorough coverage of atomic layer deposition (ALD), this book moves from basic chemistry of ALD and modeling of processes to examine ALD in memory, logic devices and machines. Reviews history, operating principles and ALD processes for each device.

Feature Papers in Electronic Materials Section

Feature Papers in Electronic Materials Section PDF Author: Fabrizio Roccaforte
Publisher:
ISBN: 9783036532264
Category :
Languages : en
Pages : 0

Book Description
This book entitled "Feature Papers in Electronic Materials Section" is a collection of selected papers recently published on the journal Materials, focusing on the latest advances in electronic materials and devices in different fields (e.g., power- and high-frequency electronics, optoelectronic devices, detectors, etc.). In the first part of the book, many articles are dedicated to wide band gap semiconductors (e.g., SiC, GaN, Ga2O3, diamond), focusing on the current relevant materials and devices technology issues. The second part of the book is a miscellaneous of other electronics materials for various applications, including two-dimensional materials for optoelectronic and high-frequency devices. Finally, some recent advances in materials and flexible sensors for bioelectronics and medical applications are presented at the end of the book.

MEMS Materials and Processes Handbook

MEMS Materials and Processes Handbook PDF Author: Reza Ghodssi
Publisher: Springer Science & Business Media
ISBN: 0387473181
Category : Technology & Engineering
Languages : en
Pages : 1211

Book Description
MEMs Materials and Processes Handbook" is a comprehensive reference for researchers searching for new materials, properties of known materials, or specific processes available for MEMS fabrication. The content is separated into distinct sections on "Materials" and "Processes". The extensive Material Selection Guide" and a "Material Database" guides the reader through the selection of appropriate materials for the required task at hand. The "Processes" section of the book is organized as a catalog of various microfabrication processes, each with a brief introduction to the technology, as well as examples of common uses in MEMs.

Power GaN Devices

Power GaN Devices PDF Author: Matteo Meneghini
Publisher: Springer
ISBN: 3319431994
Category : Technology & Engineering
Languages : en
Pages : 383

Book Description
This book presents the first comprehensive overview of the properties and fabrication methods of GaN-based power transistors, with contributions from the most active research groups in the field. It describes how gallium nitride has emerged as an excellent material for the fabrication of power transistors; thanks to the high energy gap, high breakdown field, and saturation velocity of GaN, these devices can reach breakdown voltages beyond the kV range, and very high switching frequencies, thus being suitable for application in power conversion systems. Based on GaN, switching-mode power converters with efficiency in excess of 99 % have been already demonstrated, thus clearing the way for massive adoption of GaN transistors in the power conversion market. This is expected to have important advantages at both the environmental and economic level, since power conversion losses account for 10 % of global electricity consumption. The first part of the book describes the properties and advantages of gallium nitride compared to conventional semiconductor materials. The second part of the book describes the techniques used for device fabrication, and the methods for GaN-on-Silicon mass production. Specific attention is paid to the three most advanced device structures: lateral transistors, vertical power devices, and nanowire-based HEMTs. Other relevant topics covered by the book are the strategies for normally-off operation, and the problems related to device reliability. The last chapter reviews the switching characteristics of GaN HEMTs based on a systems level approach. This book is a unique reference for people working in the materials, device and power electronics fields; it provides interdisciplinary information on material growth, device fabrication, reliability issues and circuit-level switching investigation.

Silicon Carbide Biotechnology

Silicon Carbide Biotechnology PDF Author: Stephen E. Saddow
Publisher: Elsevier
ISBN: 0123859077
Category : Technology & Engineering
Languages : en
Pages : 496

Book Description
Silicon Carbide (SiC) is a wide-band-gap semiconductor biocompatible material that has the potential to advance advanced biomedical applications. SiC devices offer higher power densities and lower energy losses, enabling lighter, more compact and higher efficiency products for biocompatible and long-term in vivo applications ranging from heart stent coatings and bone implant scaffolds to neurological implants and sensors. The main problem facing the medical community today is the lack of biocompatible materials that are also capable of electronic operation. Such devices are currently implemented using silicon technology, which either has to be hermetically sealed so it cannot interact with the body or the material is only stable in vivo for short periods of time. For long term use (permanent implanted devices such as glucose sensors, brain-machine-interface devices, smart bone and organ implants) a more robust material that the body does not recognize and reject as a foreign (i.e., not organic) material is needed. Silicon Carbide has been proven to be just such a material and will open up a whole new host of fields by allowing the development of advanced biomedical devices never before possible for long-term use in vivo. This book not only provides the materials and biomedical engineering communities with a seminal reference book on SiC that they can use to further develop the technology, it also provides a technology resource for medical doctors and practitioners who are hungry to identify and implement advanced engineering solutions to their everyday medical problems that currently lack long term, cost effective solutions. Discusses Silicon Carbide biomedical materials and technology in terms of their properties, processing, characterization, and application, in one book, from leading professionals and scientists Critical assesses existing literature, patents and FDA approvals for clinical trials, enabling the rapid assimilation of important data from the current disparate sources and promoting the transition from technology research and development to clinical trials Explores long-term use and applications in vivo in devices and applications with advanced sensing and semiconducting properties, pointing to new product devekipment particularly within brain trauma, bone implants, sub-cutaneous sensors and advanced kidney dialysis devices