Derivative-free DIRECT-type Global Optimization PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Derivative-free DIRECT-type Global Optimization PDF full book. Access full book title Derivative-free DIRECT-type Global Optimization by Linas Stripinis. Download full books in PDF and EPUB format.

Derivative-free DIRECT-type Global Optimization

Derivative-free DIRECT-type Global Optimization PDF Author: Linas Stripinis
Publisher: Springer Nature
ISBN: 3031465377
Category : Mathematics
Languages : en
Pages : 131

Book Description
After providing an in-depth introduction to derivative-free global optimization with various constraints, this book presents new original results from well-known experts on the subject. A primary focus of this book is the well-known class of deterministic DIRECT (DIviding RECTangle)-type algorithms. This book describes a new set of algorithms derived from newly developed partitioning, sampling, and selection approaches in the box- and generally-constrained global optimization, including extensions to multi-objective optimization. DIRECT-type optimization algorithms are discussed in terms of fundamental principles, potential, and boundaries of their applicability. The algorithms are analyzed from various perspectives to offer insight into their main features. This explains how and why they are effective at solving optimization problems. As part of this book, the authors also present several techniques for accelerating the DIRECT-type algorithms through parallelization and implementing efficient data structures by revealing the pros and cons of the design challenges involved. A collection of DIRECT-type algorithms described and analyzed in this book is available in DIRECTGO, a MATLAB toolbox on GitHub. Lastly, the authors demonstrate the performance of the algorithms for solving a wide range of global optimization problems with various constraints ranging from a few to hundreds of variables. Additionally, well-known practical problems from the literature are used to demonstrate the effectiveness of the developed algorithms. It is evident from these numerical results that the newly developed approaches are capable of solving problems with a wide variety of structures and complexity levels. Since implementations of the algorithms are publicly available, this monograph is full of examples showing how to use them and how to choose the most efficient ones, depending on the nature of the problem being solved. Therefore, many specialists, students, researchers, engineers, economists, computer scientists, operations researchers, and others will find this book interesting and helpful.

Derivative-free DIRECT-type Global Optimization

Derivative-free DIRECT-type Global Optimization PDF Author: Linas Stripinis
Publisher: Springer Nature
ISBN: 3031465377
Category : Mathematics
Languages : en
Pages : 131

Book Description
After providing an in-depth introduction to derivative-free global optimization with various constraints, this book presents new original results from well-known experts on the subject. A primary focus of this book is the well-known class of deterministic DIRECT (DIviding RECTangle)-type algorithms. This book describes a new set of algorithms derived from newly developed partitioning, sampling, and selection approaches in the box- and generally-constrained global optimization, including extensions to multi-objective optimization. DIRECT-type optimization algorithms are discussed in terms of fundamental principles, potential, and boundaries of their applicability. The algorithms are analyzed from various perspectives to offer insight into their main features. This explains how and why they are effective at solving optimization problems. As part of this book, the authors also present several techniques for accelerating the DIRECT-type algorithms through parallelization and implementing efficient data structures by revealing the pros and cons of the design challenges involved. A collection of DIRECT-type algorithms described and analyzed in this book is available in DIRECTGO, a MATLAB toolbox on GitHub. Lastly, the authors demonstrate the performance of the algorithms for solving a wide range of global optimization problems with various constraints ranging from a few to hundreds of variables. Additionally, well-known practical problems from the literature are used to demonstrate the effectiveness of the developed algorithms. It is evident from these numerical results that the newly developed approaches are capable of solving problems with a wide variety of structures and complexity levels. Since implementations of the algorithms are publicly available, this monograph is full of examples showing how to use them and how to choose the most efficient ones, depending on the nature of the problem being solved. Therefore, many specialists, students, researchers, engineers, economists, computer scientists, operations researchers, and others will find this book interesting and helpful.

Introduction to Derivative-Free Optimization

Introduction to Derivative-Free Optimization PDF Author: Andrew R. Conn
Publisher: SIAM
ISBN: 0898716683
Category : Mathematics
Languages : en
Pages : 276

Book Description
The first contemporary comprehensive treatment of optimization without derivatives. This text explains how sampling and model techniques are used in derivative-free methods and how they are designed to solve optimization problems. It is designed to be readily accessible to both researchers and those with a modest background in computational mathematics.

Numerical Computations: Theory and Algorithms

Numerical Computations: Theory and Algorithms PDF Author: Yaroslav D. Sergeyev
Publisher: Springer Nature
ISBN: 3030406164
Category : Computers
Languages : en
Pages : 550

Book Description
The two-volume set LNCS 11973 and 11974 constitute revised selected papers from the Third International Conference on Numerical Computations: Theory and Algorithms, NUMTA 2019, held in Crotone, Italy, in June 2019. This volume, LNCS 11974, consists of 19 full and 32 short papers chosen among regular papers presented at the the Conference including also the paper of the winner (Lorenzo Fiaschi, Pisa, Italy) of The Springer Young Researcher Prize for the best NUMTA 2019 presentation made by a young scientist. The papers in part II explore the advanced research developments in such interconnected fields as local and global optimization, machine learning, approximation, and differential equations. A special focus is given to advanced ideas related to methods and applications using emerging computational paradigms.

Black Box Optimization, Machine Learning, and No-Free Lunch Theorems

Black Box Optimization, Machine Learning, and No-Free Lunch Theorems PDF Author: Panos M. Pardalos
Publisher: Springer Nature
ISBN: 3030665151
Category : Mathematics
Languages : en
Pages : 388

Book Description
This edited volume illustrates the connections between machine learning techniques, black box optimization, and no-free lunch theorems. Each of the thirteen contributions focuses on the commonality and interdisciplinary concepts as well as the fundamentals needed to fully comprehend the impact of individual applications and problems. Current theoretical, algorithmic, and practical methods used are provided to stimulate a new effort towards innovative and efficient solutions. The book is intended for beginners who wish to achieve a broad overview of optimization methods and also for more experienced researchers as well as researchers in mathematics, optimization, operations research, quantitative logistics, data analysis, and statistics, who will benefit from access to a quick reference to key topics and methods. The coverage ranges from mathematically rigorous methods to heuristic and evolutionary approaches in an attempt to equip the reader with different viewpoints of the same problem.

Derivative-Free and Blackbox Optimization

Derivative-Free and Blackbox Optimization PDF Author: Charles Audet
Publisher: Springer
ISBN: 3319689134
Category : Mathematics
Languages : en
Pages : 307

Book Description
This book is designed as a textbook, suitable for self-learning or for teaching an upper-year university course on derivative-free and blackbox optimization. The book is split into 5 parts and is designed to be modular; any individual part depends only on the material in Part I. Part I of the book discusses what is meant by Derivative-Free and Blackbox Optimization, provides background material, and early basics while Part II focuses on heuristic methods (Genetic Algorithms and Nelder-Mead). Part III presents direct search methods (Generalized Pattern Search and Mesh Adaptive Direct Search) and Part IV focuses on model-based methods (Simplex Gradient and Trust Region). Part V discusses dealing with constraints, using surrogates, and bi-objective optimization. End of chapter exercises are included throughout as well as 15 end of chapter projects and over 40 figures. Benchmarking techniques are also presented in the appendix.

A View of Operations Research Applications in Italy, 2018

A View of Operations Research Applications in Italy, 2018 PDF Author: Mauro Dell'Amico
Publisher: Springer Nature
ISBN: 3030258424
Category : Business & Economics
Languages : en
Pages : 221

Book Description
This book presents expert descriptions of the successful application of operations research in both the private and the public sector, including in logistics, transportation, product design, production planning and scheduling, and areas of social interest. Each chapter is based on fruitful collaboration between researchers and companies, and company representatives are among the co-authors. The book derives from a 2017 call by the Italian Operations Research Society (AIRO) for information from members on their activities in promoting the use of quantitative techniques, and in particular operations research techniques, in society and industry. A booklet based on this call was issued for the annual AIRO conference, but it was felt that some of the content was of such interest that it deserved wider dissemination in more detailed form. This book is the outcome. It equips practitioners with solutions to real-life decision problems, offers researchers examples of the practical application of operations research methods, and provides Master’s and PhD students with suggestions for research development in various fields.

Computational Science and Its Applications – ICCSA 2020

Computational Science and Its Applications – ICCSA 2020 PDF Author: Osvaldo Gervasi
Publisher: Springer Nature
ISBN: 3030588084
Category : Computers
Languages : en
Pages : 1062

Book Description
The seven volumes LNCS 12249-12255 constitute the refereed proceedings of the 20th International Conference on Computational Science and Its Applications, ICCSA 2020, held in Cagliari, Italy, in July 2020. Due to COVID-19 pandemic the conference was organized in an online event. Computational Science is the main pillar of most of the present research, industrial and commercial applications, and plays a unique role in exploiting ICT innovative technologies. The 466 full papers and 32 short papers presented were carefully reviewed and selected from 1450 submissions. Apart from the general track, ICCSA 2020 also include 52 workshops, in various areas of computational sciences, ranging from computational science technologies, to specific areas of computational sciences, such as software engineering, security, machine learning and artificial intelligence, blockchain technologies, and of applications in many fields.

Learning and Intelligent Optimization

Learning and Intelligent Optimization PDF Author: Roberto Battiti
Publisher: Springer
ISBN: 3319694049
Category : Computers
Languages : en
Pages : 401

Book Description
This book constitutes the thoroughly refereed post-conference proceedings of the 11th International Conference on Learning and Intelligent Optimization, LION 11, held in Nizhny,Novgorod, Russia, in June 2017. The 20 full papers (among these one GENOPT paper) and 15 short papers presented have been carefully reviewed and selected from 73 submissions. The papers explore the advanced research developments in such interconnected fields as mathematical programming, global optimization, machine learning, and artificial intelligence. Special focus is given to advanced ideas, technologies, methods, and applications in optimization and machine learning.

Artificial Intelligence in Manufacturing

Artificial Intelligence in Manufacturing PDF Author: Masoud Soroush
Publisher: Elsevier
ISBN: 0323996728
Category : Technology & Engineering
Languages : en
Pages : 374

Book Description
Artificial Intelligence in Manufacturing: Concepts and Methods explains the most successful emerging techniques for applying AI to engineering problems. Artificial intelligence is increasingly being applied to all engineering disciplines, producing more insights into how we understand the world and allowing us to create products in new ways. This book unlocks the advantages of this technology for manufacturing by drawing on work by leading researchers who have successfully developed methods that can apply to a range of engineering applications. The book addresses educational challenges needed for widespread implementation of AI and also provides detailed technical instructions for the implementation of AI methods. Drawing on research in computer science, physics and a range of engineering disciplines, this book tackles the interdisciplinary challenges of the subject to introduce new thinking to important manufacturing problems. - Presents AI concepts from the computer science field using language and examples designed to inspire engineering graduates - Provides worked examples throughout to help readers fully engage with the methods described - Includes concepts that are supported by definitions for key terms and chapter summaries

Computational Optimization, Methods and Algorithms

Computational Optimization, Methods and Algorithms PDF Author: Slawomir Koziel
Publisher: Springer
ISBN: 3642208592
Category : Technology & Engineering
Languages : en
Pages : 292

Book Description
Computational optimization is an important paradigm with a wide range of applications. In virtually all branches of engineering and industry, we almost always try to optimize something - whether to minimize the cost and energy consumption, or to maximize profits, outputs, performance and efficiency. In many cases, this search for optimality is challenging, either because of the high computational cost of evaluating objectives and constraints, or because of the nonlinearity, multimodality, discontinuity and uncertainty of the problem functions in the real-world systems. Another complication is that most problems are often NP-hard, that is, the solution time for finding the optimum increases exponentially with the problem size. The development of efficient algorithms and specialized techniques that address these difficulties is of primary importance for contemporary engineering, science and industry. This book consists of 12 self-contained chapters, contributed from worldwide experts who are working in these exciting areas. The book strives to review and discuss the latest developments concerning optimization and modelling with a focus on methods and algorithms for computational optimization. It also covers well-chosen, real-world applications in science, engineering and industry. Main topics include derivative-free optimization, multi-objective evolutionary algorithms, surrogate-based methods, maximum simulated likelihood estimation, support vector machines, and metaheuristic algorithms. Application case studies include aerodynamic shape optimization, microwave engineering, black-box optimization, classification, economics, inventory optimization and structural optimization. This graduate level book can serve as an excellent reference for lecturers, researchers and students in computational science, engineering and industry.