Deep Learning in Introductory Physics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Deep Learning in Introductory Physics PDF full book. Access full book title Deep Learning in Introductory Physics by Mark J. Lattery. Download full books in PDF and EPUB format.

Deep Learning in Introductory Physics

Deep Learning in Introductory Physics PDF Author: Mark J. Lattery
Publisher: Information Age Publishing
ISBN: 9781681236285
Category : Physics
Languages : en
Pages : 0

Book Description
A volume in Science & Engineering Education Sources Deep Learning in Introductory Physics: Exploratory Studies of Model‐Based Reasoning is concerned with the broad question of how students learn physics in a model‐centered classroom. The diverse, creative, and sometimes unexpected ways students construct models, and deal with intellectual conflict, provide valuable insights into student learning and cast a new vision for physics teaching. This book is the first publication in several years to thoroughly address the "coherence versus fragmentation" debate in science education, and the first to advance and explore the hypothesis that deep science learning is regressive and revolutionary. Deep Learning in Introductory Physics also contributes to a growing literature on the use of history and philosophy of science to confront difficult theoretical and practical issues in science teaching, and addresses current international concern over the state of science education and appropriate standards for science teaching and learning. The book is divided into three parts. Part I introduces the framework, agenda, and educational context of the book. An initial study of student modeling raises a number of questions about the nature and goals of physics education. Part II presents the results of four exploratory case studies. These studies reproduce the results of Part I with a more‐diverse sample of students; under new conditions (a public debate, peer discussions, and group interviews); and with new research prompts (model‐building software, bridging tasks, and elicitation strategies). Part III significantly advances the emergent themes of Parts I and II through historical analysis and a review of physics education research.

Deep Learning in Introductory Physics

Deep Learning in Introductory Physics PDF Author: Mark J. Lattery
Publisher: Information Age Publishing
ISBN: 9781681236285
Category : Physics
Languages : en
Pages : 0

Book Description
A volume in Science & Engineering Education Sources Deep Learning in Introductory Physics: Exploratory Studies of Model‐Based Reasoning is concerned with the broad question of how students learn physics in a model‐centered classroom. The diverse, creative, and sometimes unexpected ways students construct models, and deal with intellectual conflict, provide valuable insights into student learning and cast a new vision for physics teaching. This book is the first publication in several years to thoroughly address the "coherence versus fragmentation" debate in science education, and the first to advance and explore the hypothesis that deep science learning is regressive and revolutionary. Deep Learning in Introductory Physics also contributes to a growing literature on the use of history and philosophy of science to confront difficult theoretical and practical issues in science teaching, and addresses current international concern over the state of science education and appropriate standards for science teaching and learning. The book is divided into three parts. Part I introduces the framework, agenda, and educational context of the book. An initial study of student modeling raises a number of questions about the nature and goals of physics education. Part II presents the results of four exploratory case studies. These studies reproduce the results of Part I with a more‐diverse sample of students; under new conditions (a public debate, peer discussions, and group interviews); and with new research prompts (model‐building software, bridging tasks, and elicitation strategies). Part III significantly advances the emergent themes of Parts I and II through historical analysis and a review of physics education research.

Deep Learning and Physics

Deep Learning and Physics PDF Author: Akinori Tanaka
Publisher: Springer Nature
ISBN: 9813361085
Category : Science
Languages : en
Pages : 207

Book Description
What is deep learning for those who study physics? Is it completely different from physics? Or is it similar? In recent years, machine learning, including deep learning, has begun to be used in various physics studies. Why is that? Is knowing physics useful in machine learning? Conversely, is knowing machine learning useful in physics? This book is devoted to answers of these questions. Starting with basic ideas of physics, neural networks are derived naturally. And you can learn the concepts of deep learning through the words of physics. In fact, the foundation of machine learning can be attributed to physical concepts. Hamiltonians that determine physical systems characterize various machine learning structures. Statistical physics given by Hamiltonians defines machine learning by neural networks. Furthermore, solving inverse problems in physics through machine learning and generalization essentially provides progress and even revolutions in physics. For these reasons, in recent years interdisciplinary research in machine learning and physics has been expanding dramatically. This book is written for anyone who wants to learn, understand, and apply the relationship between deep learning/machine learning and physics. All that is needed to read this book are the basic concepts in physics: energy and Hamiltonians. The concepts of statistical mechanics and the bracket notation of quantum mechanics, which are explained in columns, are used to explain deep learning frameworks. We encourage you to explore this new active field of machine learning and physics, with this book as a map of the continent to be explored.

Deep Learning For Physics Research

Deep Learning For Physics Research PDF Author: Martin Erdmann
Publisher: World Scientific
ISBN: 9811237476
Category : Science
Languages : en
Pages : 340

Book Description
A core principle of physics is knowledge gained from data. Thus, deep learning has instantly entered physics and may become a new paradigm in basic and applied research.This textbook addresses physics students and physicists who want to understand what deep learning actually means, and what is the potential for their own scientific projects. Being familiar with linear algebra and parameter optimization is sufficient to jump-start deep learning. Adopting a pragmatic approach, basic and advanced applications in physics research are described. Also offered are simple hands-on exercises for implementing deep networks for which python code and training data can be downloaded.

Deep Learning in Introductory Physics

Deep Learning in Introductory Physics PDF Author: Mark J. Lattery
Publisher: IAP
ISBN: 1681236303
Category : Education
Languages : en
Pages : 304

Book Description
Deep Learning in Introductory Physics: Exploratory Studies of Model?Based Reasoning is concerned with the broad question of how students learn physics in a model?centered classroom. The diverse, creative, and sometimes unexpected ways students construct models, and deal with intellectual conflict, provide valuable insights into student learning and cast a new vision for physics teaching. This book is the first publication in several years to thoroughly address the “coherence versus fragmentation” debate in science education, and the first to advance and explore the hypothesis that deep science learning is regressive and revolutionary. Deep Learning in Introductory Physics also contributes to a growing literature on the use of history and philosophy of science to confront difficult theoretical and practical issues in science teaching, and addresses current international concern over the state of science education and appropriate standards for science teaching and learning. The book is divided into three parts. Part I introduces the framework, agenda, and educational context of the book. An initial study of student modeling raises a number of questions about the nature and goals of physics education. Part II presents the results of four exploratory case studies. These studies reproduce the results of Part I with a more diverse sample of students; under new conditions (a public debate, peer discussions, and group interviews); and with new research prompts (model?building software, bridging tasks, and elicitation strategies). Part III significantly advances the emergent themes of Parts I and II through historical analysis and a review of physics education research. ENDORSEMENTS: "In Deep Learning in Introductory Physics, Lattery describes his extremely innovative course in which students' ideas about motion are elicited, evaluated with peers, and revised through experiment and discussion. The reader can see the students' deep engagement in constructive scientific modeling, while students deal with counter-intuitive ideas about motion that challenged Galileo in many of the same ways. Lattery captures students engaging in scientific thinking skills, and building difficult conceptual understandings at the same time. This is the 'double outcome' that many science educators have been searching for. The case studies provide inspiring examples of innovative course design, student sensemaking and reasoning, and deep conceptual change." ~ John Clement, University of Massachusetts—Amherst, Scientific Reasoning Research Institute "Deep Learning in Introductory Physics is an extraordinary book and an important intellectual achievement in many senses. It offers new perspectives on science education that will be of interest to practitioners, to education researchers, as well as to philosophers and historians of science. Lattery combines insights into model-based thinking with instructive examples from the history of science, such as Galileo’s struggles with understanding accelerated motion, to introduce new ways of teaching science. The book is based on first-hand experiences with innovative teaching methods, reporting student’s ideas and discussions about motion as an illustration of how modeling and model-building can help understanding science. Its lively descriptions of these experiences and its concise presentations of insights backed by a rich literature on education, cognitive science, and the history and philosophy of science make it a great read for everybody interested in how models shape thinking processes." ~ Dr. Jürgen Renn, Director, Max Planck Institute for the History of Science

Deep Learning and Computational Physics

Deep Learning and Computational Physics PDF Author: Deep Ray
Publisher: Springer Nature
ISBN: 3031593456
Category :
Languages : en
Pages : 160

Book Description


Deep Learning in Computational Mechanics

Deep Learning in Computational Mechanics PDF Author: Stefan Kollmannsberger
Publisher: Springer Nature
ISBN: 3030765873
Category : Technology & Engineering
Languages : en
Pages : 108

Book Description
This book provides a first course on deep learning in computational mechanics. The book starts with a short introduction to machine learning’s fundamental concepts before neural networks are explained thoroughly. It then provides an overview of current topics in physics and engineering, setting the stage for the book’s main topics: physics-informed neural networks and the deep energy method. The idea of the book is to provide the basic concepts in a mathematically sound manner and yet to stay as simple as possible. To achieve this goal, mostly one-dimensional examples are investigated, such as approximating functions by neural networks or the simulation of the temperature’s evolution in a one-dimensional bar. Each chapter contains examples and exercises which are either solved analytically or in PyTorch, an open-source machine learning framework for python.

The Principles of Deep Learning Theory

The Principles of Deep Learning Theory PDF Author: Daniel A. Roberts
Publisher: Cambridge University Press
ISBN: 1009020927
Category : Science
Languages : en
Pages : 474

Book Description
This textbook establishes a theoretical framework for understanding deep learning models of practical relevance. With an approach that borrows from theoretical physics, Roberts and Yaida provide clear and pedagogical explanations of how realistic deep neural networks actually work. To make results from the theoretical forefront accessible, the authors eschew the subject's traditional emphasis on intimidating formality without sacrificing accuracy. Straightforward and approachable, this volume balances detailed first-principle derivations of novel results with insight and intuition for theorists and practitioners alike. This self-contained textbook is ideal for students and researchers interested in artificial intelligence with minimal prerequisites of linear algebra, calculus, and informal probability theory, and it can easily fill a semester-long course on deep learning theory. For the first time, the exciting practical advances in modern artificial intelligence capabilities can be matched with a set of effective principles, providing a timeless blueprint for theoretical research in deep learning.

Introduction to Deep Learning

Introduction to Deep Learning PDF Author: Sandro Skansi
Publisher: Springer
ISBN: 3319730045
Category : Computers
Languages : en
Pages : 196

Book Description
This textbook presents a concise, accessible and engaging first introduction to deep learning, offering a wide range of connectionist models which represent the current state-of-the-art. The text explores the most popular algorithms and architectures in a simple and intuitive style, explaining the mathematical derivations in a step-by-step manner. The content coverage includes convolutional networks, LSTMs, Word2vec, RBMs, DBNs, neural Turing machines, memory networks and autoencoders. Numerous examples in working Python code are provided throughout the book, and the code is also supplied separately at an accompanying website. Topics and features: introduces the fundamentals of machine learning, and the mathematical and computational prerequisites for deep learning; discusses feed-forward neural networks, and explores the modifications to these which can be applied to any neural network; examines convolutional neural networks, and the recurrent connections to a feed-forward neural network; describes the notion of distributed representations, the concept of the autoencoder, and the ideas behind language processing with deep learning; presents a brief history of artificial intelligence and neural networks, and reviews interesting open research problems in deep learning and connectionism. This clearly written and lively primer on deep learning is essential reading for graduate and advanced undergraduate students of computer science, cognitive science and mathematics, as well as fields such as linguistics, logic, philosophy, and psychology.

Introduction to Deep Learning: A Beginner’s Edition

Introduction to Deep Learning: A Beginner’s Edition PDF Author: Harshitha Raghavan Devarajan
Publisher: INENCE PUBLICATIONS PVT LTD
ISBN: 9395940204
Category : Antiques & Collectibles
Languages : en
Pages : 174

Book Description
"Introduction to Deep Learning: A Beginner’s Edition" is a comprehensive guide designed specifically for newcomers to the field of deep learning. This book provides an accessible introduction to the fundamental concepts, making it an ideal starting point for those who are curious about artificial intelligence and its rapidly expanding applications. The book begins with a clear explanation of what deep learning is and how it differs from traditional machine learning, covering the basics of neural networks and how they are used to recognize patterns and make decisions. One of the key strengths of this book is its practical, hands-on approach. Readers are guided through the process of building, training, and deploying neural networks using popular frameworks like TensorFlow and PyTorch. The step-by-step instructions, along with code snippets, allow even those with little to no programming experience to engage actively with the material. Visual aids, such as diagrams and flowcharts, are used throughout the book to simplify complex topics, making it easier for readers to grasp the inner workings of neural networks. The book also explores real-world applications of deep learning, highlighting its impact across various industries, including healthcare, autonomous vehicles, and natural language processing. By providing context and practical examples, the book demonstrates how deep learning is being used to solve complex problems and transform industries. In addition to the core content, the book includes a glossary of key terms, quizzes, and exercises to reinforce learning. "Introduction to Deep Learning: A Beginner’s Edition" is more than just a textbook; it is a complete learning experience designed to equip beginners with the knowledge and skills needed to embark on a successful journey into the world of deep learning.

Introduction to Deep Learning

Introduction to Deep Learning PDF Author: Eugene Charniak
Publisher: MIT Press
ISBN: 0262039516
Category : Computers
Languages : en
Pages : 187

Book Description
A project-based guide to the basics of deep learning. This concise, project-driven guide to deep learning takes readers through a series of program-writing tasks that introduce them to the use of deep learning in such areas of artificial intelligence as computer vision, natural-language processing, and reinforcement learning. The author, a longtime artificial intelligence researcher specializing in natural-language processing, covers feed-forward neural nets, convolutional neural nets, word embeddings, recurrent neural nets, sequence-to-sequence learning, deep reinforcement learning, unsupervised models, and other fundamental concepts and techniques. Students and practitioners learn the basics of deep learning by working through programs in Tensorflow, an open-source machine learning framework. “I find I learn computer science material best by sitting down and writing programs,” the author writes, and the book reflects this approach. Each chapter includes a programming project, exercises, and references for further reading. An early chapter is devoted to Tensorflow and its interface with Python, the widely used programming language. Familiarity with linear algebra, multivariate calculus, and probability and statistics is required, as is a rudimentary knowledge of programming in Python. The book can be used in both undergraduate and graduate courses; practitioners will find it an essential reference.