Deep Learning and Missing Data in Engineering Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Deep Learning and Missing Data in Engineering Systems PDF full book. Access full book title Deep Learning and Missing Data in Engineering Systems by Collins Achepsah Leke. Download full books in PDF and EPUB format.

Deep Learning and Missing Data in Engineering Systems

Deep Learning and Missing Data in Engineering Systems PDF Author: Collins Achepsah Leke
Publisher: Springer
ISBN: 3030011801
Category : Technology & Engineering
Languages : en
Pages : 188

Book Description
Deep Learning and Missing Data in Engineering Systems uses deep learning and swarm intelligence methods to cover missing data estimation in engineering systems. The missing data estimation processes proposed in the book can be applied in image recognition and reconstruction. To facilitate the imputation of missing data, several artificial intelligence approaches are presented, including: deep autoencoder neural networks; deep denoising autoencoder networks; the bat algorithm; the cuckoo search algorithm; and the firefly algorithm. The hybrid models proposed are used to estimate the missing data in high-dimensional data settings more accurately. Swarm intelligence algorithms are applied to address critical questions such as model selection and model parameter estimation. The authors address feature extraction for the purpose of reconstructing the input data from reduced dimensions by the use of deep autoencoder neural networks. They illustrate new models diagrammatically, report their findings in tables, so as to put their methods on a sound statistical basis. The methods proposed speed up the process of data estimation while preserving known features of the data matrix. This book is a valuable source of information for researchers and practitioners in data science. Advanced undergraduate and postgraduate students studying topics in computational intelligence and big data, can also use the book as a reference for identifying and introducing new research thrusts in missing data estimation.

Deep Learning and Missing Data in Engineering Systems

Deep Learning and Missing Data in Engineering Systems PDF Author: Collins Achepsah Leke
Publisher: Springer
ISBN: 3030011801
Category : Technology & Engineering
Languages : en
Pages : 188

Book Description
Deep Learning and Missing Data in Engineering Systems uses deep learning and swarm intelligence methods to cover missing data estimation in engineering systems. The missing data estimation processes proposed in the book can be applied in image recognition and reconstruction. To facilitate the imputation of missing data, several artificial intelligence approaches are presented, including: deep autoencoder neural networks; deep denoising autoencoder networks; the bat algorithm; the cuckoo search algorithm; and the firefly algorithm. The hybrid models proposed are used to estimate the missing data in high-dimensional data settings more accurately. Swarm intelligence algorithms are applied to address critical questions such as model selection and model parameter estimation. The authors address feature extraction for the purpose of reconstructing the input data from reduced dimensions by the use of deep autoencoder neural networks. They illustrate new models diagrammatically, report their findings in tables, so as to put their methods on a sound statistical basis. The methods proposed speed up the process of data estimation while preserving known features of the data matrix. This book is a valuable source of information for researchers and practitioners in data science. Advanced undergraduate and postgraduate students studying topics in computational intelligence and big data, can also use the book as a reference for identifying and introducing new research thrusts in missing data estimation.

Deep Learning and Missing Data in Engineering Systems

Deep Learning and Missing Data in Engineering Systems PDF Author: Collins Achepsah Leke
Publisher: Springer
ISBN: 9783030011796
Category : Computers
Languages : en
Pages : 179

Book Description
Deep Learning and Missing Data in Engineering Systems uses deep learning and swarm intelligence methods to cover missing data estimation in engineering systems. The missing data estimation processes proposed in the book can be applied in image recognition and reconstruction. To facilitate the imputation of missing data, several artificial intelligence approaches are presented, including: deep autoencoder neural networks; deep denoising autoencoder networks; the bat algorithm; the cuckoo search algorithm; and the firefly algorithm. The hybrid models proposed are used to estimate the missing data in high-dimensional data settings more accurately. Swarm intelligence algorithms are applied to address critical questions such as model selection and model parameter estimation. The authors address feature extraction for the purpose of reconstructing the input data from reduced dimensions by the use of deep autoencoder neural networks. They illustrate new models diagrammatically, report their findings in tables, so as to put their methods on a sound statistical basis. The methods proposed speed up the process of data estimation while preserving known features of the data matrix. This book is a valuable source of information for researchers and practitioners in data science. Advanced undergraduate and postgraduate students studying topics in computational intelligence and big data, can also use the book as a reference for identifying and introducing new research thrusts in missing data estimation.

Artificial Intelligence Methods in the Environmental Sciences

Artificial Intelligence Methods in the Environmental Sciences PDF Author: Sue Ellen Haupt
Publisher: Springer Science & Business Media
ISBN: 1402091192
Category : Science
Languages : en
Pages : 418

Book Description
How can environmental scientists and engineers use the increasing amount of available data to enhance our understanding of planet Earth, its systems and processes? This book describes various potential approaches based on artificial intelligence (AI) techniques, including neural networks, decision trees, genetic algorithms and fuzzy logic. Part I contains a series of tutorials describing the methods and the important considerations in applying them. In Part II, many practical examples illustrate the power of these techniques on actual environmental problems. International experts bring to life ways to apply AI to problems in the environmental sciences. While one culture entwines ideas with a thread, another links them with a red line. Thus, a “red thread“ ties the book together, weaving a tapestry that pictures the ‘natural’ data-driven AI methods in the light of the more traditional modeling techniques, and demonstrating the power of these data-based methods.

Computational Intelligence for Missing Data Imputation, Estimation, and Management: Knowledge Optimization Techniques

Computational Intelligence for Missing Data Imputation, Estimation, and Management: Knowledge Optimization Techniques PDF Author: Marwala, Tshilidzi
Publisher: IGI Global
ISBN: 1605663379
Category : Computers
Languages : en
Pages : 325

Book Description
"This book is for those who use data analysis to build decision support systems, particularly engineers, scientists and statisticians"--Provided by publisher.

Handbook Of Machine Learning - Volume 2: Optimization And Decision Making

Handbook Of Machine Learning - Volume 2: Optimization And Decision Making PDF Author: Tshilidzi Marwala
Publisher: World Scientific
ISBN: 981120568X
Category : Computers
Languages : en
Pages : 321

Book Description
Building on , this volume on Optimization and Decision Making covers a range of algorithms and their applications. Like the first volume, it provides a starting point for machine learning enthusiasts as a comprehensive guide on classical optimization methods. It also provides an in-depth overview on how artificial intelligence can be used to define, disprove or validate economic modeling and decision making concepts.

Artificial Intelligence, Game Theory and Mechanism Design in Politics

Artificial Intelligence, Game Theory and Mechanism Design in Politics PDF Author: Tshilidzi Marwala
Publisher: Springer Nature
ISBN: 9819951038
Category : Political Science
Languages : en
Pages : 221

Book Description
This book explores how AI and mechanism design can provide a new framework for international politics. The international political system is all manners in which countries, governments and people relate. Mechanism design in international politics relates to identifying rules that define relationships between people and countries that achieve a particular outcome, e.g., peace or more trade or democracy or economic development. Artificial intelligence is technique of making machines intelligent. This book explores mechanism design and artificial intelligence in international politics and applies these technologies to politics, economy and society. This book will be of interest to scholars of international relations, politics, sustainable development, and artificial intelligence.

Machine Learning and Knowledge Discovery for Engineering Systems Health Management

Machine Learning and Knowledge Discovery for Engineering Systems Health Management PDF Author: Ashok N. Srivastava
Publisher: CRC Press
ISBN: 1000755711
Category : Computers
Languages : en
Pages : 505

Book Description
This volume presents state-of-the-art tools and techniques for automatically detecting, diagnosing, and predicting the effects of adverse events in an engineered system. It emphasizes the importance of these techniques in managing the intricate interactions within and between engineering systems to maintain a high degree of reliability. Reflecting the interdisciplinary nature of the field, the book explains how the fundamental algorithms and methods of both physics-based and data-driven approaches effectively address systems health management in application areas such as data centers, aircraft, and software systems.

Rational Machines and Artificial Intelligence

Rational Machines and Artificial Intelligence PDF Author: Tshilidzi Marwala
Publisher: Academic Press
ISBN: 0128209445
Category : Science
Languages : en
Pages : 272

Book Description
Intelligent machines are populating our social, economic and political spaces. These intelligent machines are powered by Artificial Intelligence technologies such as deep learning. They are used in decision making. One element of decision making is the issue of rationality. Regulations such as the General Data Protection Regulation (GDPR) require that decisions that are made by these intelligent machines are explainable. Rational Machines and Artificial Intelligence proposes that explainable decisions are good but the explanation must be rational to prevent these decisions from being challenged. Noted author Tshilidzi Marwala studies the concept of machine rationality and compares this to the rationality bounds prescribed by Nobel Laureate Herbert Simon and rationality bounds derived from the work of Nobel Laureates Richard Thaler and Daniel Kahneman. Rational Machines and Artificial Intelligence describes why machine rationality is flexibly bounded due to advances in technology. This effectively means that optimally designed machines are more rational than human beings. Readers will also learn whether machine rationality can be quantified and identify how this can be achieved. Furthermore, the author discusses whether machine rationality is subjective. Finally, the author examines whether a population of intelligent machines collectively make more rational decisions than individual machines. Examples in biomedical engineering, social sciences and the financial sectors are used to illustrate these concepts. - Provides an introduction to the key questions and challenges surrounding Rational Machines, including, When do we rely on decisions made by intelligent machines? What do decisions made by intelligent machines mean? Are these decisions rational or fair? Can we quantify these decisions? and Is rationality subjective? - Introduces for the first time the concept of rational opportunity costs and the concept of flexibly bounded rationality as a rationality of intelligent machines and the implications of these issues on the reliability of machine decisions - Includes coverage of Rational Counterfactuals, group versus individual rationality, and rational markets - Discusses the application of Moore's Law and advancements in Artificial Intelligence, as well as developments in the area of data acquisition and analysis technologies and how they affect the boundaries of intelligent machine rationality

The Fusion of Internet of Things, Artificial Intelligence, and Cloud Computing in Health Care

The Fusion of Internet of Things, Artificial Intelligence, and Cloud Computing in Health Care PDF Author: Patrick Siarry
Publisher: Springer Nature
ISBN: 3030752208
Category : Technology & Engineering
Languages : en
Pages : 270

Book Description
This book reviews the convergence technologies like cloud computing, artificial intelligence (AI) and Internet of Things (IoT) in healthcare and how they can help all stakeholders in the healthcare sector. The book is a proficient guide on the relationship between AI, IoT and healthcare and gives examples into how IoT is changing all aspects of the healthcare industry. Topics include remote patient monitoring, the telemedicine ecosystem, pattern imaging analytics using AI, disease identification and diagnosis using AI, robotic surgery, prediction of epidemic outbreaks, and more. The contributors include applications and case studies across all areas of computational intelligence in healthcare data. The authors also include workflow in IoT-enabled healthcare technologies and explore privacy and security issues in healthcare-based IoT.

The Balancing Problem in the Governance of Artificial Intelligence

The Balancing Problem in the Governance of Artificial Intelligence PDF Author: Tshilidzi Marwala
Publisher: Springer Nature
ISBN: 9819792517
Category :
Languages : en
Pages : 251

Book Description