Data Technology in Materials Modelling PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Data Technology in Materials Modelling PDF full book. Access full book title Data Technology in Materials Modelling by Martin Thomas Horsch. Download full books in PDF and EPUB format.

Data Technology in Materials Modelling

Data Technology in Materials Modelling PDF Author: Martin Thomas Horsch
Publisher: Springer Nature
ISBN: 3030685977
Category : Technology & Engineering
Languages : en
Pages : 92

Book Description
This open access book discusses advances in semantic interoperability for materials modelling, aiming at integrating data obtained from different methods and sources into common frameworks, and facilitating the development of platforms where simulation services in computational molecular engineering can be provided as well as coupled and linked to each other in a standardized and reliable way. The Virtual Materials Marketplace (VIMMP), which is open to all service providers and clients, provides a framework for offering and accessing such services, assisting the uptake of novel modelling and simulation approaches by SMEs, consultants, and industrial R&D end users. Semantic assets presented include the EngMeta metadata schema for research data infrastructures in simulation-based engineering and the collection of ontologies from VIMMP, including the ontology for simulation, modelling, and optimization (OSMO) and the VIMMP software ontology (VISO).

Data Technology in Materials Modelling

Data Technology in Materials Modelling PDF Author: Martin Thomas Horsch
Publisher: Springer Nature
ISBN: 3030685977
Category : Technology & Engineering
Languages : en
Pages : 92

Book Description
This open access book discusses advances in semantic interoperability for materials modelling, aiming at integrating data obtained from different methods and sources into common frameworks, and facilitating the development of platforms where simulation services in computational molecular engineering can be provided as well as coupled and linked to each other in a standardized and reliable way. The Virtual Materials Marketplace (VIMMP), which is open to all service providers and clients, provides a framework for offering and accessing such services, assisting the uptake of novel modelling and simulation approaches by SMEs, consultants, and industrial R&D end users. Semantic assets presented include the EngMeta metadata schema for research data infrastructures in simulation-based engineering and the collection of ontologies from VIMMP, including the ontology for simulation, modelling, and optimization (OSMO) and the VIMMP software ontology (VISO).

Handbook of Materials Modeling

Handbook of Materials Modeling PDF Author: Sidney Yip
Publisher: Springer Science & Business Media
ISBN: 1402032862
Category : Science
Languages : en
Pages : 2903

Book Description
The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.

Data-Driven Modeling for Additive Manufacturing of Metals

Data-Driven Modeling for Additive Manufacturing of Metals PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309494206
Category : Technology & Engineering
Languages : en
Pages : 79

Book Description
Additive manufacturing (AM) is the process in which a three-dimensional object is built by adding subsequent layers of materials. AM enables novel material compositions and shapes, often without the need for specialized tooling. This technology has the potential to revolutionize how mechanical parts are created, tested, and certified. However, successful real-time AM design requires the integration of complex systems and often necessitates expertise across domains. Simulation-based design approaches, such as those applied in engineering product design and material design, have the potential to improve AM predictive modeling capabilities, particularly when combined with existing knowledge of the underlying mechanics. These predictive models have the potential to reduce the cost of and time for concept-to-final-product development and can be used to supplement experimental tests. The National Academies convened a workshop on October 24-26, 2018 to discuss the frontiers of mechanistic data-driven modeling for AM of metals. Topics of discussion included measuring and modeling process monitoring and control, developing models to represent microstructure evolution, alloy design, and part suitability, modeling phases of process and machine design, and accelerating product and process qualification and certification. These topics then led to the assessment of short-, immediate-, and long-term challenges in AM. This publication summarizes the presentations and discussions from the workshop.

Models, Databases and Simulation Tools Needed for Realization of Integrated Computational Mat. Eng. (ICME 2010)

Models, Databases and Simulation Tools Needed for Realization of Integrated Computational Mat. Eng. (ICME 2010) PDF Author: Steven M. Arnold and Terry T. Wong, Editors
Publisher: ASM International
ISBN: 1615038434
Category : Technology & Engineering
Languages : en
Pages : 206

Book Description


Handbook of Materials Modeling

Handbook of Materials Modeling PDF Author: Wanda Andreoni
Publisher:
ISBN: 9783319502571
Category :
Languages : en
Pages : 792

Book Description


Fundamentals Of Materials Modelling For Metals Processing Technologies: Theories And Applications

Fundamentals Of Materials Modelling For Metals Processing Technologies: Theories And Applications PDF Author: Jianguo Lin
Publisher: World Scientific Publishing Company
ISBN: 1783264993
Category : Technology & Engineering
Languages : en
Pages : 529

Book Description
This book provides a comprehensive introduction to the unique theory developed over years of research on materials and process modelling and its application in metal forming technologies. It starts with the introduction of fundamental theories on the mechanics of materials, computational mechanics and the formulation of unified constitutive equations. Particular attention is paid to elastic-plastic formulations for cold metal forming and unified elastic-viscoplastic constitutive equations for warm/hot metals processing. Damage in metal forming and numerical techniques to solve and determine the unified constitutive equations are also detailed. Examples are given for the application of the unified theories to solve practical problems encountered in metal forming processes. This is particularly useful to predict microstructure evolution in warm/hot metal forming processes. Crystal plasticity theories and modelling techniques with their applications in micro-forming are also introduced in the book.The book is self-contained and unified in presentation. The explanations are highlighted to capture the interest of curious readers and complete enough to provide the necessary background material to further explore/develop new theories and applications.

Data Analytics and Management in Data Intensive Domains

Data Analytics and Management in Data Intensive Domains PDF Author: Alexander Sychev
Publisher: Springer Nature
ISBN: 3030812006
Category : Computers
Languages : en
Pages : 231

Book Description
This book constitutes the post-conference proceedings of the 22nd International Conference on Data Analytics and Management in Data Intensive Domains, DAMDID/RCDL 2020, held in Voronezh, Russia, in October 2020*. The 16 revised full papers and two keynotes were carefully reviewed and selected from 60 submissions. The papers are organized in the following topical sections: data Integration, conceptual models and ontologies; data management in semantic web; data analysis in medicine; data analysis in astronomy; information extraction from text. * The conference was held virtually due to the COVID-19 pandemic.

Data Analytics and What It Means to the Materials Community

Data Analytics and What It Means to the Materials Community PDF Author: National Academies of Sciences Engineering and Medicine
Publisher:
ISBN: 9780309664080
Category :
Languages : en
Pages :

Book Description
Emerging techniques in data analytics, including machine learning and artificial intelligence, offer exciting opportunities for advancing scientific discovery and innovation in materials science. Vast repositories of experimental data and sophisticated simulations are being utilized to predict material properties, design and test new compositions, and accelerate nearly every facet of traditional materials science. How can the materials science community take advantage of these opportunities while avoiding potential pitfalls? What roadblocks may impede progress in the coming years, and how might they be addressed? To explore these issues, the Workshop on Data Analytics and What It Means to the Materials Community was organized as part of a workshop series on Defense Materials, Manufacturing, and Its Infrastructure. Hosted by the National Academies of Sciences, Engineering, and Medicine, the 2-day workshop was organized around three main topics: materials design, data curation, and emerging applications. Speakers identified promising data analytics tools and their achievements to date, as well as key challenges related to dealing with sparse data and filling data gaps; decisions around data storage, retention, and sharing; and the need to access, combine, and use data from disparate sources. Participants discussed the complementary roles of simulation and experimentation and explored the many opportunities for data informatics to increase the efficiency of materials discovery, design, and testing by reducing the amount of experimentation required. With an eye toward the ultimate goal of enabling applications, attendees considered how to ensure that the benefits of data analytics tools carry through the entire materials development process, from exploration to validation, manufacturing, and use. This publication summarizes the presentations and discussion of the workshop.

Thermodynamic Modeling and Materials Data Engineering

Thermodynamic Modeling and Materials Data Engineering PDF Author: J.-P. Caliste
Publisher: Springer Science & Business Media
ISBN: 3642722075
Category : Technology & Engineering
Languages : en
Pages : 406

Book Description
J.-P. CALISTE, A. TRUYOL AND J. WESTBROOK The Series, "Data and Knowledge in a Changing World", exemplifies CODATA's primary purpose of collecting, from widely different fields, a wealth of information on efficient exploitation of data for progress in science and technology and making that information available to scientists and engineers. A separate and complementary CODATA Reference Series will present Directories of compiled and evaluated data and Glossaries of data-related terms. The present book "Thermodynamic Modeling and Materials Data Engineering" discusses thermodynamic, structural, systemic and heuristic approaches to the modeling of complex materials behavior in condensed phases, both fluids and solids, in order to evaluate their potential applications. Itwas inspired by the Symposium on "Materials and Structural Properties" held during the 14th International CODATA Conference in Chambery, France. The quality of the contributions to this Symposium motivated us to present" a coherent book of interest to the field. Updated contributions inspired by Symposium discussions and selections from other CODATA workshops concerning material properties data and Computer Aided Design combine to highlight the complexity of material data issues on experimental, theoretical and simulation levels Articles were selected for their pertinence in three areas. Complex data leading to interesting developments and tools such as: • new developments in state equations and their applications, • prediction and validation of physical and energy data by group correlations for pure compounds, • modeling and prediction of mixture properties.

Multiscale Materials Modelling

Multiscale Materials Modelling PDF Author: Z. X. Guo
Publisher: Elsevier
ISBN: 184569337X
Category : Technology & Engineering
Languages : en
Pages : 307

Book Description
Multiscale materials modelling offers an integrated approach to modelling material behaviour across a range of scales from the electronic, atomic and microstructural up to the component level. As a result, it provides valuable new insights into complex structures and their properties, opening the way to develop new, multi-functional materials together with improved process and product designs. Multiscale materials modelling summarises some of the key techniques and their applications. The various chapters cover the spectrum of scales in modelling methodologies, including electronic structure calculations, mesoscale and continuum modelling. The book covers such themes as dislocation behaviour and plasticity as well as the modelling of structural materials such as metals, polymers and ceramics. With its distinguished editor and international team of contributors, Multiscale materials modelling is a valuable reference for both the modelling community and those in industry wanting to know more about how multiscale materials modelling can help optimise product and process design. Reviews the principles and applications of mult-scale materials modelling Covers themes such as dislocation behaviour and plasticity and the modelling of structural materials Examines the spectrum of scales in modelling methodologies, including electronic structure calculations, mesoscale and continuum modelling