Author: John F. Tanner, Jr.
Publisher: John Wiley & Sons
ISBN: 1118905733
Category : Business & Economics
Languages : en
Pages : 256
Book Description
Key decisions determine the success of big data strategy Dynamic Customer Strategy: Big Profits from Big Data is a comprehensive guide to exploiting big data for both business-to-consumer and business-to-business marketing. This complete guide provides a process for rigorous decision making in navigating the data-driven industry shift, informing marketing practice, and aiding businesses in early adoption. Using data from a five-year study to illustrate important concepts and scenarios along the way, the author speaks directly to marketing and operations professionals who may not necessarily be big data savvy. With expert insight and clear analysis, the book helps eliminate paralysis-by-analysis and optimize decision making for marketing performance. Nearly seventy-five percent of marketers plan to adopt a big data analytics solution within two years, but many are likely to fail. Despite intensive planning, generous spending, and the best intentions, these initiatives will not succeed without a manager at the helm who is capable of handling the nuances of big data projects. This requires a new way of marketing, and a new approach to data. It means applying new models and metrics to brand new consumer behaviors. Dynamic Customer Strategy clarifies the situation, and highlights the key decisions that have the greatest impact on a company's big data plan. Topics include: Applying the elements of Dynamic Customer Strategy Acquiring, mining, and analyzing data Metrics and models for big data utilization Shifting perspective from model to customer Big data is a tremendous opportunity for marketers and may just be the only factor that will allow marketers to keep pace with the changing consumer and thus keep brands relevant at a time of unprecedented choice. But like any tool, it must be wielded with skill and precision. Dynamic Customer Strategy: Big Profits from Big Data helps marketers shape a strategy that works.
Analytics and Dynamic Customer Strategy
Author: John F. Tanner, Jr.
Publisher: John Wiley & Sons
ISBN: 1118905733
Category : Business & Economics
Languages : en
Pages : 256
Book Description
Key decisions determine the success of big data strategy Dynamic Customer Strategy: Big Profits from Big Data is a comprehensive guide to exploiting big data for both business-to-consumer and business-to-business marketing. This complete guide provides a process for rigorous decision making in navigating the data-driven industry shift, informing marketing practice, and aiding businesses in early adoption. Using data from a five-year study to illustrate important concepts and scenarios along the way, the author speaks directly to marketing and operations professionals who may not necessarily be big data savvy. With expert insight and clear analysis, the book helps eliminate paralysis-by-analysis and optimize decision making for marketing performance. Nearly seventy-five percent of marketers plan to adopt a big data analytics solution within two years, but many are likely to fail. Despite intensive planning, generous spending, and the best intentions, these initiatives will not succeed without a manager at the helm who is capable of handling the nuances of big data projects. This requires a new way of marketing, and a new approach to data. It means applying new models and metrics to brand new consumer behaviors. Dynamic Customer Strategy clarifies the situation, and highlights the key decisions that have the greatest impact on a company's big data plan. Topics include: Applying the elements of Dynamic Customer Strategy Acquiring, mining, and analyzing data Metrics and models for big data utilization Shifting perspective from model to customer Big data is a tremendous opportunity for marketers and may just be the only factor that will allow marketers to keep pace with the changing consumer and thus keep brands relevant at a time of unprecedented choice. But like any tool, it must be wielded with skill and precision. Dynamic Customer Strategy: Big Profits from Big Data helps marketers shape a strategy that works.
Publisher: John Wiley & Sons
ISBN: 1118905733
Category : Business & Economics
Languages : en
Pages : 256
Book Description
Key decisions determine the success of big data strategy Dynamic Customer Strategy: Big Profits from Big Data is a comprehensive guide to exploiting big data for both business-to-consumer and business-to-business marketing. This complete guide provides a process for rigorous decision making in navigating the data-driven industry shift, informing marketing practice, and aiding businesses in early adoption. Using data from a five-year study to illustrate important concepts and scenarios along the way, the author speaks directly to marketing and operations professionals who may not necessarily be big data savvy. With expert insight and clear analysis, the book helps eliminate paralysis-by-analysis and optimize decision making for marketing performance. Nearly seventy-five percent of marketers plan to adopt a big data analytics solution within two years, but many are likely to fail. Despite intensive planning, generous spending, and the best intentions, these initiatives will not succeed without a manager at the helm who is capable of handling the nuances of big data projects. This requires a new way of marketing, and a new approach to data. It means applying new models and metrics to brand new consumer behaviors. Dynamic Customer Strategy clarifies the situation, and highlights the key decisions that have the greatest impact on a company's big data plan. Topics include: Applying the elements of Dynamic Customer Strategy Acquiring, mining, and analyzing data Metrics and models for big data utilization Shifting perspective from model to customer Big data is a tremendous opportunity for marketers and may just be the only factor that will allow marketers to keep pace with the changing consumer and thus keep brands relevant at a time of unprecedented choice. But like any tool, it must be wielded with skill and precision. Dynamic Customer Strategy: Big Profits from Big Data helps marketers shape a strategy that works.
Service Annual Survey
Natural Language Processing for Global and Local Business
Author: Fatih Pinarbași
Publisher:
ISBN: 9781799842408
Category : Computational linguistics
Languages : en
Pages :
Book Description
"This book explores the theoretical and practical phenomenon of natural language processing through different languages and platforms in terms of today's conditions"--
Publisher:
ISBN: 9781799842408
Category : Computational linguistics
Languages : en
Pages :
Book Description
"This book explores the theoretical and practical phenomenon of natural language processing through different languages and platforms in terms of today's conditions"--
Wholesale Data Sources for Market Analysis
Author: United States. Bureau of Competitive Assessment and Business Policy
Publisher:
ISBN:
Category : Marketing research
Languages : en
Pages : 12
Book Description
Publisher:
ISBN:
Category : Marketing research
Languages : en
Pages : 12
Book Description
Digital Marketing Excellence
Author: Dave Chaffey
Publisher: Taylor & Francis
ISBN: 1000610918
Category : Business & Economics
Languages : en
Pages : 677
Book Description
Now in its sixth edition, the hugely popular Digital Marketing Excellence is a practical guide to creating and executing integrated digital marketing plans, combining established approaches to marketing planning with the creative use of new digital models and digital tools. Written by two highly experienced digital marketing consultants, the book shows you how to: Draw up an outline integrated digital marketing plan Evaluate and apply digital marketing principles and models Integrate online and offline communications Implement customer-driven digital marketing as part of digital transformation Reduce costly trial and error Measure and enhance your digital marketing Learn best practices for reaching and engaging your audiences using the key digital marketing platforms. This new edition has been streamlined to seamlessly integrate the latest developments in digital analytics, ethics and privacy, Predictive Analytics, Machine Learning and Artificial Intelligence. Including new international case studies and up-to-date examples throughout, this book cuts through the jargon to show marketers how to leverage data and digital technologies to their advantage. Offering a highly structured and accessible guide to a critical and far-reaching subject, Digital Marketing Excellence, 6th edition, provides a vital reference point for all digital marketing students, and managers involved in digital marketing strategy and implementation. Online resources have been fully updated for the new edition and include a new set of PowerPoint slides and a full test bank of questions and exercises.
Publisher: Taylor & Francis
ISBN: 1000610918
Category : Business & Economics
Languages : en
Pages : 677
Book Description
Now in its sixth edition, the hugely popular Digital Marketing Excellence is a practical guide to creating and executing integrated digital marketing plans, combining established approaches to marketing planning with the creative use of new digital models and digital tools. Written by two highly experienced digital marketing consultants, the book shows you how to: Draw up an outline integrated digital marketing plan Evaluate and apply digital marketing principles and models Integrate online and offline communications Implement customer-driven digital marketing as part of digital transformation Reduce costly trial and error Measure and enhance your digital marketing Learn best practices for reaching and engaging your audiences using the key digital marketing platforms. This new edition has been streamlined to seamlessly integrate the latest developments in digital analytics, ethics and privacy, Predictive Analytics, Machine Learning and Artificial Intelligence. Including new international case studies and up-to-date examples throughout, this book cuts through the jargon to show marketers how to leverage data and digital technologies to their advantage. Offering a highly structured and accessible guide to a critical and far-reaching subject, Digital Marketing Excellence, 6th edition, provides a vital reference point for all digital marketing students, and managers involved in digital marketing strategy and implementation. Online resources have been fully updated for the new edition and include a new set of PowerPoint slides and a full test bank of questions and exercises.
Essentials of Marketing Research
Author: Kenneth E. Clow
Publisher: SAGE
ISBN: 1412991307
Category : Business & Economics
Languages : en
Pages : 521
Book Description
Essentials of Marketing Research takes an applied approach to the fundamentals of marketing research by providing examples from the business world of marketing research and showing students how to apply marketing research results. This text focuses on understanding and interpreting marketing research studies. Focusing on the 'how-to' and 'so what' of marketing research helps students understand the value of marketing research and how they can put marketing research into practice. There is a strong emphasis on how to use marketing research to make better management decisions. The unique feature set integrates data analysis, interpretation, application, and decision-making throughout the entire text. The text opens with a discussion of the role of marketing research, along with a breakdown of the marketing research process. The text then moves into a section discussing types of marketing research, including secondary resources, qualitative research, observation research, and survey research. Newer methods (e.g. using blogs or Twitter feeds as secondary resources and using online focus groups) are discussed as extensions of traditional methods such. The third section discusses sampling procedures, measurement methods, marketing scales, and questionnaires. Finally, a section on analyzing and reporting marketing research focuses on the fundamental data analysis skills that students will use in their marketing careers. Features of this text include: - Chapter Openers describe the results of a research study that apply to the topics being presented in that chapter. These are taken from a variety of industries, with a greater emphasis on social media and the Internet. - A Global Concerns section appears in each chapter, helping prepare students to conduct market research on an international scale.This text emphasizes the presentation of research results and uses graphs, tables, and figures extensively. - A Statistics Review section emphasizes the practical interpretation and application of statistical principles being reviewed in each chapter. - Dealing with Data sections in each chapter provide students with opportunities to practice interpreting data and applying results to marketing decisions. Multiple SPSS data sets and step-by-step instructions are available on the companion site to use with this feature. - Each Chapter Summary is tied to the chapter-opening Learning Objectives. - A Continuing Case Study follows a group of students through the research process. It shows potential trade-offs, difficulties and flaws that often occur during the implementation of research project. Accompanying case questions can be used for class discussion, in-class group work, or individual assignments. - End-of-Chapter Critical Thinking Exercises are applied in nature and emphasize key chapter concepts. These can be used as assignments to test students' understanding of marketing research results and how results can be applied to decision-making. - End-of-chapter Your Research Project provides more challenging opportunities for students to apply chapter knowledge on an in-depth basis, and thus olearn by doing.
Publisher: SAGE
ISBN: 1412991307
Category : Business & Economics
Languages : en
Pages : 521
Book Description
Essentials of Marketing Research takes an applied approach to the fundamentals of marketing research by providing examples from the business world of marketing research and showing students how to apply marketing research results. This text focuses on understanding and interpreting marketing research studies. Focusing on the 'how-to' and 'so what' of marketing research helps students understand the value of marketing research and how they can put marketing research into practice. There is a strong emphasis on how to use marketing research to make better management decisions. The unique feature set integrates data analysis, interpretation, application, and decision-making throughout the entire text. The text opens with a discussion of the role of marketing research, along with a breakdown of the marketing research process. The text then moves into a section discussing types of marketing research, including secondary resources, qualitative research, observation research, and survey research. Newer methods (e.g. using blogs or Twitter feeds as secondary resources and using online focus groups) are discussed as extensions of traditional methods such. The third section discusses sampling procedures, measurement methods, marketing scales, and questionnaires. Finally, a section on analyzing and reporting marketing research focuses on the fundamental data analysis skills that students will use in their marketing careers. Features of this text include: - Chapter Openers describe the results of a research study that apply to the topics being presented in that chapter. These are taken from a variety of industries, with a greater emphasis on social media and the Internet. - A Global Concerns section appears in each chapter, helping prepare students to conduct market research on an international scale.This text emphasizes the presentation of research results and uses graphs, tables, and figures extensively. - A Statistics Review section emphasizes the practical interpretation and application of statistical principles being reviewed in each chapter. - Dealing with Data sections in each chapter provide students with opportunities to practice interpreting data and applying results to marketing decisions. Multiple SPSS data sets and step-by-step instructions are available on the companion site to use with this feature. - Each Chapter Summary is tied to the chapter-opening Learning Objectives. - A Continuing Case Study follows a group of students through the research process. It shows potential trade-offs, difficulties and flaws that often occur during the implementation of research project. Accompanying case questions can be used for class discussion, in-class group work, or individual assignments. - End-of-Chapter Critical Thinking Exercises are applied in nature and emphasize key chapter concepts. These can be used as assignments to test students' understanding of marketing research results and how results can be applied to decision-making. - End-of-chapter Your Research Project provides more challenging opportunities for students to apply chapter knowledge on an in-depth basis, and thus olearn by doing.
The Elements of Big Data Value
Author: Edward Curry
Publisher: Springer Nature
ISBN: 3030681769
Category : Computers
Languages : en
Pages : 399
Book Description
This open access book presents the foundations of the Big Data research and innovation ecosystem and the associated enablers that facilitate delivering value from data for business and society. It provides insights into the key elements for research and innovation, technical architectures, business models, skills, and best practices to support the creation of data-driven solutions and organizations. The book is a compilation of selected high-quality chapters covering best practices, technologies, experiences, and practical recommendations on research and innovation for big data. The contributions are grouped into four parts: · Part I: Ecosystem Elements of Big Data Value focuses on establishing the big data value ecosystem using a holistic approach to make it attractive and valuable to all stakeholders. · Part II: Research and Innovation Elements of Big Data Value details the key technical and capability challenges to be addressed for delivering big data value. · Part III: Business, Policy, and Societal Elements of Big Data Value investigates the need to make more efficient use of big data and understanding that data is an asset that has significant potential for the economy and society. · Part IV: Emerging Elements of Big Data Value explores the critical elements to maximizing the future potential of big data value. Overall, readers are provided with insights which can support them in creating data-driven solutions, organizations, and productive data ecosystems. The material represents the results of a collective effort undertaken by the European data community as part of the Big Data Value Public-Private Partnership (PPP) between the European Commission and the Big Data Value Association (BDVA) to boost data-driven digital transformation.
Publisher: Springer Nature
ISBN: 3030681769
Category : Computers
Languages : en
Pages : 399
Book Description
This open access book presents the foundations of the Big Data research and innovation ecosystem and the associated enablers that facilitate delivering value from data for business and society. It provides insights into the key elements for research and innovation, technical architectures, business models, skills, and best practices to support the creation of data-driven solutions and organizations. The book is a compilation of selected high-quality chapters covering best practices, technologies, experiences, and practical recommendations on research and innovation for big data. The contributions are grouped into four parts: · Part I: Ecosystem Elements of Big Data Value focuses on establishing the big data value ecosystem using a holistic approach to make it attractive and valuable to all stakeholders. · Part II: Research and Innovation Elements of Big Data Value details the key technical and capability challenges to be addressed for delivering big data value. · Part III: Business, Policy, and Societal Elements of Big Data Value investigates the need to make more efficient use of big data and understanding that data is an asset that has significant potential for the economy and society. · Part IV: Emerging Elements of Big Data Value explores the critical elements to maximizing the future potential of big data value. Overall, readers are provided with insights which can support them in creating data-driven solutions, organizations, and productive data ecosystems. The material represents the results of a collective effort undertaken by the European data community as part of the Big Data Value Public-Private Partnership (PPP) between the European Commission and the Big Data Value Association (BDVA) to boost data-driven digital transformation.
Big Data for Twenty-First-Century Economic Statistics
Author: Katharine G. Abraham
Publisher: University of Chicago Press
ISBN: 022680125X
Category : Business & Economics
Languages : en
Pages : 502
Book Description
Introduction.Big data for twenty-first-century economic statistics: the future is now /Katharine G. Abraham, Ron S. Jarmin, Brian C. Moyer, and Matthew D. Shapiro --Toward comprehensive use of big data in economic statistics.Reengineering key national economic indicators /Gabriel Ehrlich, John Haltiwanger, Ron S. Jarmin, David Johnson, and Matthew D. Shapiro ;Big data in the US consumer price index: experiences and plans /Crystal G. Konny, Brendan K. Williams, and David M. Friedman ;Improving retail trade data products using alternative data sources /Rebecca J. Hutchinson ;From transaction data to economic statistics: constructing real-time, high-frequency, geographic measures of consumer spending /Aditya Aladangady, Shifrah Aron-Dine, Wendy Dunn, Laura Feiveson, Paul Lengermann, and Claudia Sahm ;Improving the accuracy of economic measurement with multiple data sources: the case of payroll employment data /Tomaz Cajner, Leland D. Crane, Ryan A. Decker, Adrian Hamins-Puertolas, and Christopher Kurz --Uses of big data for classification.Transforming naturally occurring text data into economic statistics: the case of online job vacancy postings /Arthur Turrell, Bradley Speigner, Jyldyz Djumalieva, David Copple, and James Thurgood ;Automating response evaluation for franchising questions on the 2017 economic census /Joseph Staudt, Yifang Wei, Lisa Singh, Shawn Klimek, J. Bradford Jensen, and Andrew Baer ;Using public data to generate industrial classification codes /John Cuffe, Sudip Bhattacharjee, Ugochukwu Etudo, Justin C. Smith, Nevada Basdeo, Nathaniel Burbank, and Shawn R. Roberts --Uses of big data for sectoral measurement.Nowcasting the local economy: using Yelp data to measure economic activity /Edward L. Glaeser, Hyunjin Kim, and Michael Luca ;Unit values for import and export price indexes: a proof of concept /Don A. Fast and Susan E. Fleck ;Quantifying productivity growth in the delivery of important episodes of care within the Medicare program using insurance claims and administrative data /John A. Romley, Abe Dunn, Dana Goldman, and Neeraj Sood ;Valuing housing services in the era of big data: a user cost approach leveraging Zillow microdata /Marina Gindelsky, Jeremy G. Moulton, and Scott A. Wentland --Methodological challenges and advances.Off to the races: a comparison of machine learning and alternative data for predicting economic indicators /Jeffrey C. Chen, Abe Dunn, Kyle Hood, Alexander Driessen, and Andrea Batch ;A machine learning analysis of seasonal and cyclical sales in weekly scanner data /Rishab Guha and Serena Ng ;Estimating the benefits of new products /W. Erwin Diewert and Robert C. Feenstra.
Publisher: University of Chicago Press
ISBN: 022680125X
Category : Business & Economics
Languages : en
Pages : 502
Book Description
Introduction.Big data for twenty-first-century economic statistics: the future is now /Katharine G. Abraham, Ron S. Jarmin, Brian C. Moyer, and Matthew D. Shapiro --Toward comprehensive use of big data in economic statistics.Reengineering key national economic indicators /Gabriel Ehrlich, John Haltiwanger, Ron S. Jarmin, David Johnson, and Matthew D. Shapiro ;Big data in the US consumer price index: experiences and plans /Crystal G. Konny, Brendan K. Williams, and David M. Friedman ;Improving retail trade data products using alternative data sources /Rebecca J. Hutchinson ;From transaction data to economic statistics: constructing real-time, high-frequency, geographic measures of consumer spending /Aditya Aladangady, Shifrah Aron-Dine, Wendy Dunn, Laura Feiveson, Paul Lengermann, and Claudia Sahm ;Improving the accuracy of economic measurement with multiple data sources: the case of payroll employment data /Tomaz Cajner, Leland D. Crane, Ryan A. Decker, Adrian Hamins-Puertolas, and Christopher Kurz --Uses of big data for classification.Transforming naturally occurring text data into economic statistics: the case of online job vacancy postings /Arthur Turrell, Bradley Speigner, Jyldyz Djumalieva, David Copple, and James Thurgood ;Automating response evaluation for franchising questions on the 2017 economic census /Joseph Staudt, Yifang Wei, Lisa Singh, Shawn Klimek, J. Bradford Jensen, and Andrew Baer ;Using public data to generate industrial classification codes /John Cuffe, Sudip Bhattacharjee, Ugochukwu Etudo, Justin C. Smith, Nevada Basdeo, Nathaniel Burbank, and Shawn R. Roberts --Uses of big data for sectoral measurement.Nowcasting the local economy: using Yelp data to measure economic activity /Edward L. Glaeser, Hyunjin Kim, and Michael Luca ;Unit values for import and export price indexes: a proof of concept /Don A. Fast and Susan E. Fleck ;Quantifying productivity growth in the delivery of important episodes of care within the Medicare program using insurance claims and administrative data /John A. Romley, Abe Dunn, Dana Goldman, and Neeraj Sood ;Valuing housing services in the era of big data: a user cost approach leveraging Zillow microdata /Marina Gindelsky, Jeremy G. Moulton, and Scott A. Wentland --Methodological challenges and advances.Off to the races: a comparison of machine learning and alternative data for predicting economic indicators /Jeffrey C. Chen, Abe Dunn, Kyle Hood, Alexander Driessen, and Andrea Batch ;A machine learning analysis of seasonal and cyclical sales in weekly scanner data /Rishab Guha and Serena Ng ;Estimating the benefits of new products /W. Erwin Diewert and Robert C. Feenstra.
Statistics for Marketing and Consumer Research
Author: Mario Mazzocchi
Publisher: SAGE
ISBN: 1446204014
Category : Business & Economics
Languages : en
Pages : 433
Book Description
Balancing simplicity with technical rigour, this practical guide to the statistical techniques essential to research in marketing and related fields, describes each method as well as showing how they are applied. The book is accompanied by two real data sets to replicate examples and with exercises to solve, as well as detailed guidance on the use of appropriate software including: - 750 powerpoint slides with lecture notes and step-by-step guides to run analyses in SPSS (also includes screenshots) - 136 multiple choice questions for tests This is augmented by in-depth discussion of topics including: - Sampling - Data management and statistical packages - Hypothesis testing - Cluster analysis - Structural equation modelling
Publisher: SAGE
ISBN: 1446204014
Category : Business & Economics
Languages : en
Pages : 433
Book Description
Balancing simplicity with technical rigour, this practical guide to the statistical techniques essential to research in marketing and related fields, describes each method as well as showing how they are applied. The book is accompanied by two real data sets to replicate examples and with exercises to solve, as well as detailed guidance on the use of appropriate software including: - 750 powerpoint slides with lecture notes and step-by-step guides to run analyses in SPSS (also includes screenshots) - 136 multiple choice questions for tests This is augmented by in-depth discussion of topics including: - Sampling - Data management and statistical packages - Hypothesis testing - Cluster analysis - Structural equation modelling
New Horizons for a Data-Driven Economy
Author: José María Cavanillas
Publisher: Springer
ISBN: 3319215698
Category : Computers
Languages : en
Pages : 312
Book Description
In this book readers will find technological discussions on the existing and emerging technologies across the different stages of the big data value chain. They will learn about legal aspects of big data, the social impact, and about education needs and requirements. And they will discover the business perspective and how big data technology can be exploited to deliver value within different sectors of the economy. The book is structured in four parts: Part I “The Big Data Opportunity” explores the value potential of big data with a particular focus on the European context. It also describes the legal, business and social dimensions that need to be addressed, and briefly introduces the European Commission’s BIG project. Part II “The Big Data Value Chain” details the complete big data lifecycle from a technical point of view, ranging from data acquisition, analysis, curation and storage, to data usage and exploitation. Next, Part III “Usage and Exploitation of Big Data” illustrates the value creation possibilities of big data applications in various sectors, including industry, healthcare, finance, energy, media and public services. Finally, Part IV “A Roadmap for Big Data Research” identifies and prioritizes the cross-sectorial requirements for big data research, and outlines the most urgent and challenging technological, economic, political and societal issues for big data in Europe. This compendium summarizes more than two years of work performed by a leading group of major European research centers and industries in the context of the BIG project. It brings together research findings, forecasts and estimates related to this challenging technological context that is becoming the major axis of the new digitally transformed business environment.
Publisher: Springer
ISBN: 3319215698
Category : Computers
Languages : en
Pages : 312
Book Description
In this book readers will find technological discussions on the existing and emerging technologies across the different stages of the big data value chain. They will learn about legal aspects of big data, the social impact, and about education needs and requirements. And they will discover the business perspective and how big data technology can be exploited to deliver value within different sectors of the economy. The book is structured in four parts: Part I “The Big Data Opportunity” explores the value potential of big data with a particular focus on the European context. It also describes the legal, business and social dimensions that need to be addressed, and briefly introduces the European Commission’s BIG project. Part II “The Big Data Value Chain” details the complete big data lifecycle from a technical point of view, ranging from data acquisition, analysis, curation and storage, to data usage and exploitation. Next, Part III “Usage and Exploitation of Big Data” illustrates the value creation possibilities of big data applications in various sectors, including industry, healthcare, finance, energy, media and public services. Finally, Part IV “A Roadmap for Big Data Research” identifies and prioritizes the cross-sectorial requirements for big data research, and outlines the most urgent and challenging technological, economic, political and societal issues for big data in Europe. This compendium summarizes more than two years of work performed by a leading group of major European research centers and industries in the context of the BIG project. It brings together research findings, forecasts and estimates related to this challenging technological context that is becoming the major axis of the new digitally transformed business environment.