Data Exploration and Preparation with BigQuery PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Data Exploration and Preparation with BigQuery PDF full book. Access full book title Data Exploration and Preparation with BigQuery by Mike Kahn. Download full books in PDF and EPUB format.

Data Exploration and Preparation with BigQuery

Data Exploration and Preparation with BigQuery PDF Author: Mike Kahn
Publisher: Packt Publishing Ltd
ISBN: 1805123424
Category : Computers
Languages : en
Pages : 264

Book Description
Leverage BigQuery to understand and prepare your data to ensure that it's accurate, reliable, and ready for analysis and modeling Key Features Use mock datasets to explore data with the BigQuery web UI, bq CLI, and BigQuery API in the Cloud console Master optimization techniques for storage and query performance in BigQuery Engage with case studies on data exploration and preparation for advertising, transportation, and customer support data Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionData professionals encounter a multitude of challenges such as handling large volumes of data, dealing with data silos, and the lack of appropriate tools. Datasets often arrive in different conditions and formats, demanding considerable time from analysts, engineers, and scientists to process and uncover insights. The complexity of the data life cycle often hinders teams and organizations from extracting the desired value from their data assets. Data Exploration and Preparation with BigQuery offers a holistic solution to these challenges. The book begins with the basics of BigQuery while covering the fundamentals of data exploration and preparation. It then progresses to demonstrate how to use BigQuery for these tasks and explores the array of big data tools at your disposal within the Google Cloud ecosystem. The book doesn’t merely offer theoretical insights; it’s a hands-on companion that walks you through properly structuring your tables for query efficiency and ensures adherence to data preparation best practices. You’ll also learn when to use Dataflow, BigQuery, and Dataprep for ETL and ELT workflows. The book will skillfully guide you through various case studies, demonstrating how BigQuery can be used to solve real-world data problems. By the end of this book, you’ll have mastered the use of SQL to explore and prepare datasets in BigQuery, unlocking deeper insights from data.What you will learn Assess the quality of a dataset and learn best practices for data cleansing Prepare data for analysis, visualization, and machine learning Explore approaches to data visualization in BigQuery Apply acquired knowledge to real-life scenarios and design patterns Set up and organize BigQuery resources Use SQL and other tools to navigate datasets Implement best practices to query BigQuery datasets Gain proficiency in using data preparation tools, techniques, and strategies Who this book is for This book is for data analysts seeking to enhance their data exploration and preparation skills using BigQuery. It guides anyone using BigQuery as a data warehouse to extract business insights from large datasets. A basic understanding of SQL, reporting, data modeling, and transformations will assist with understanding the topics covered in this book.

Data Exploration and Preparation with BigQuery

Data Exploration and Preparation with BigQuery PDF Author: Mike Kahn
Publisher: Packt Publishing Ltd
ISBN: 1805123424
Category : Computers
Languages : en
Pages : 264

Book Description
Leverage BigQuery to understand and prepare your data to ensure that it's accurate, reliable, and ready for analysis and modeling Key Features Use mock datasets to explore data with the BigQuery web UI, bq CLI, and BigQuery API in the Cloud console Master optimization techniques for storage and query performance in BigQuery Engage with case studies on data exploration and preparation for advertising, transportation, and customer support data Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionData professionals encounter a multitude of challenges such as handling large volumes of data, dealing with data silos, and the lack of appropriate tools. Datasets often arrive in different conditions and formats, demanding considerable time from analysts, engineers, and scientists to process and uncover insights. The complexity of the data life cycle often hinders teams and organizations from extracting the desired value from their data assets. Data Exploration and Preparation with BigQuery offers a holistic solution to these challenges. The book begins with the basics of BigQuery while covering the fundamentals of data exploration and preparation. It then progresses to demonstrate how to use BigQuery for these tasks and explores the array of big data tools at your disposal within the Google Cloud ecosystem. The book doesn’t merely offer theoretical insights; it’s a hands-on companion that walks you through properly structuring your tables for query efficiency and ensures adherence to data preparation best practices. You’ll also learn when to use Dataflow, BigQuery, and Dataprep for ETL and ELT workflows. The book will skillfully guide you through various case studies, demonstrating how BigQuery can be used to solve real-world data problems. By the end of this book, you’ll have mastered the use of SQL to explore and prepare datasets in BigQuery, unlocking deeper insights from data.What you will learn Assess the quality of a dataset and learn best practices for data cleansing Prepare data for analysis, visualization, and machine learning Explore approaches to data visualization in BigQuery Apply acquired knowledge to real-life scenarios and design patterns Set up and organize BigQuery resources Use SQL and other tools to navigate datasets Implement best practices to query BigQuery datasets Gain proficiency in using data preparation tools, techniques, and strategies Who this book is for This book is for data analysts seeking to enhance their data exploration and preparation skills using BigQuery. It guides anyone using BigQuery as a data warehouse to extract business insights from large datasets. A basic understanding of SQL, reporting, data modeling, and transformations will assist with understanding the topics covered in this book.

Google BigQuery: The Definitive Guide

Google BigQuery: The Definitive Guide PDF Author: Valliappa Lakshmanan
Publisher: O'Reilly Media
ISBN: 1492044431
Category : Computers
Languages : en
Pages : 522

Book Description
Work with petabyte-scale datasets while building a collaborative, agile workplace in the process. This practical book is the canonical reference to Google BigQuery, the query engine that lets you conduct interactive analysis of large datasets. BigQuery enables enterprises to efficiently store, query, ingest, and learn from their data in a convenient framework. With this book, you’ll examine how to analyze data at scale to derive insights from large datasets efficiently. Valliappa Lakshmanan, tech lead for Google Cloud Platform, and Jordan Tigani, engineering director for the BigQuery team, provide best practices for modern data warehousing within an autoscaled, serverless public cloud. Whether you want to explore parts of BigQuery you’re not familiar with or prefer to focus on specific tasks, this reference is indispensable.

Strategic Blueprint for Enterprise Analytics

Strategic Blueprint for Enterprise Analytics PDF Author: Liang Wang
Publisher: Springer Nature
ISBN: 3031558855
Category :
Languages : en
Pages : 256

Book Description


Data Intensive Computing Applications for Big Data

Data Intensive Computing Applications for Big Data PDF Author: M. Mittal
Publisher: IOS Press
ISBN: 1614998140
Category : Computers
Languages : en
Pages : 618

Book Description
The book ‘Data Intensive Computing Applications for Big Data’ discusses the technical concepts of big data, data intensive computing through machine learning, soft computing and parallel computing paradigms. It brings together researchers to report their latest results or progress in the development of the above mentioned areas. Since there are few books on this specific subject, the editors aim to provide a common platform for researchers working in this area to exhibit their novel findings. The book is intended as a reference work for advanced undergraduates and graduate students, as well as multidisciplinary, interdisciplinary and transdisciplinary research workers and scientists on the subjects of big data and cloud/parallel and distributed computing, and explains didactically many of the core concepts of these approaches for practical applications. It is organized into 24 chapters providing a comprehensive overview of big data analysis using parallel computing and addresses the complete data science workflow in the cloud, as well as dealing with privacy issues and the challenges faced in a data-intensive cloud computing environment. The book explores both fundamental and high-level concepts, and will serve as a manual for those in the industry, while also helping beginners to understand the basic and advanced aspects of big data and cloud computing.

Google Machine Learning and Generative AI for Solutions Architects

Google Machine Learning and Generative AI for Solutions Architects PDF Author: Kieran Kavanagh
Publisher: Packt Publishing Ltd
ISBN: 1803247029
Category : Computers
Languages : en
Pages : 552

Book Description
Architect and run real-world AI/ML solutions at scale on Google Cloud, and discover best practices to address common industry challenges effectively Key Features Understand key concepts, from fundamentals through to complex topics, via a methodical approach Build real-world end-to-end MLOps solutions and generative AI applications on Google Cloud Get your hands on a code repository with over 20 hands-on projects for all stages of the ML model development lifecycle Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionMost companies today are incorporating AI/ML into their businesses. Building and running apps utilizing AI/ML effectively is tough. This book, authored by a principal architect with about two decades of industry experience, who has led cross-functional teams to design, plan, implement, and govern enterprise cloud strategies, shows you exactly how to design and run AI/ML workloads successfully using years of experience from some of the world’s leading tech companies. You’ll get a clear understanding of essential fundamental AI/ML concepts, before moving on to complex topics with the help of examples and hands-on activities. This will help you explore advanced, cutting-edge AI/ML applications that address real-world use cases in today’s market. You’ll recognize the common challenges that companies face when implementing AI/ML workloads, and discover industry-proven best practices to overcome these. The chapters also teach you about the vast AI/ML landscape on Google Cloud and how to implement all the steps needed in a typical AI/ML project. You’ll use services such as BigQuery to prepare data; Vertex AI to train, deploy, monitor, and scale models in production; as well as MLOps to automate the entire process. By the end of this book, you will be able to unlock the full potential of Google Cloud's AI/ML offerings.What you will learn Build solutions with open-source offerings on Google Cloud, such as TensorFlow, PyTorch, and Spark Source, understand, and prepare data for ML workloads Build, train, and deploy ML models on Google Cloud Create an effective MLOps strategy and implement MLOps workloads on Google Cloud Discover common challenges in typical AI/ML projects and get solutions from experts Explore vector databases and their importance in Generative AI applications Uncover new Gen AI patterns such as Retrieval Augmented Generation (RAG), agents, and agentic workflows Who this book is for This book is for aspiring solutions architects looking to design and implement AI/ML solutions on Google Cloud. Although this book is suitable for both beginners and experienced practitioners, basic knowledge of Python and ML concepts is required. The book focuses on how AI/ML is used in the real world on Google Cloud. It briefly covers the basics at the beginning to establish a baseline for you, but it does not go into depth on the underlying mathematical concepts that are readily available in academic material.

Machine Learning with BigQuery ML

Machine Learning with BigQuery ML PDF Author: Alessandro Marrandino
Publisher: Packt Publishing Ltd
ISBN: 1800562187
Category : Computers
Languages : en
Pages : 344

Book Description
Manage different business scenarios with the right machine learning technique using Google's highly scalable BigQuery ML Key FeaturesGain a clear understanding of AI and machine learning services on GCP, learn when to use these, and find out how to integrate them with BigQuery MLLeverage SQL syntax to train, evaluate, test, and use ML modelsDiscover how BigQuery works and understand the capabilities of BigQuery ML using examplesBook Description BigQuery ML enables you to easily build machine learning (ML) models with SQL without much coding. This book will help you to accelerate the development and deployment of ML models with BigQuery ML. The book starts with a quick overview of Google Cloud and BigQuery architecture. You'll then learn how to configure a Google Cloud project, understand the architectural components and capabilities of BigQuery, and find out how to build ML models with BigQuery ML. The book teaches you how to use ML using SQL on BigQuery. You'll analyze the key phases of a ML model's lifecycle and get to grips with the SQL statements used to train, evaluate, test, and use a model. As you advance, you'll build a series of use cases by applying different ML techniques such as linear regression, binary and multiclass logistic regression, k-means, ARIMA time series, deep neural networks, and XGBoost using practical use cases. Moving on, you'll cover matrix factorization and deep neural networks using BigQuery ML's capabilities. Finally, you'll explore the integration of BigQuery ML with other Google Cloud Platform components such as AI Platform Notebooks and TensorFlow along with discovering best practices and tips and tricks for hyperparameter tuning and performance enhancement. By the end of this BigQuery book, you'll be able to build and evaluate your own ML models with BigQuery ML. What you will learnDiscover how to prepare datasets to build an effective ML modelForecast business KPIs by leveraging various ML models and BigQuery MLBuild and train a recommendation engine to suggest the best products for your customers using BigQuery MLDevelop, train, and share a BigQuery ML model from previous parts with AI Platform NotebooksFind out how to invoke a trained TensorFlow model directly from BigQueryGet to grips with BigQuery ML best practices to maximize your ML performanceWho this book is for This book is for data scientists, data analysts, data engineers, and anyone looking to get started with Google's BigQuery ML. You'll also find this book useful if you want to accelerate the development of ML models or if you are a business user who wants to apply ML in an easy way using SQL. Basic knowledge of BigQuery and SQL is required.

Official Google Cloud Certified Professional Data Engineer Study Guide

Official Google Cloud Certified Professional Data Engineer Study Guide PDF Author: Dan Sullivan
Publisher: John Wiley & Sons
ISBN: 1119618436
Category : Computers
Languages : en
Pages : 357

Book Description
The proven Study Guide that prepares you for this new Google Cloud exam The Google Cloud Certified Professional Data Engineer Study Guide, provides everything you need to prepare for this important exam and master the skills necessary to land that coveted Google Cloud Professional Data Engineer certification. Beginning with a pre-book assessment quiz to evaluate what you know before you begin, each chapter features exam objectives and review questions, plus the online learning environment includes additional complete practice tests. Written by Dan Sullivan, a popular and experienced online course author for machine learning, big data, and Cloud topics, Google Cloud Certified Professional Data Engineer Study Guide is your ace in the hole for deploying and managing analytics and machine learning applications. Build and operationalize storage systems, pipelines, and compute infrastructure Understand machine learning models and learn how to select pre-built models Monitor and troubleshoot machine learning models Design analytics and machine learning applications that are secure, scalable, and highly available. This exam guide is designed to help you develop an in depth understanding of data engineering and machine learning on Google Cloud Platform.

Official Google Cloud Certified Professional Data Engineer Study Guide

Official Google Cloud Certified Professional Data Engineer Study Guide PDF Author: Dan Sullivan
Publisher: John Wiley & Sons
ISBN: 1119618452
Category : Computers
Languages : en
Pages : 357

Book Description
The proven Study Guide that prepares you for this new Google Cloud exam The Google Cloud Certified Professional Data Engineer Study Guide, provides everything you need to prepare for this important exam and master the skills necessary to land that coveted Google Cloud Professional Data Engineer certification. Beginning with a pre-book assessment quiz to evaluate what you know before you begin, each chapter features exam objectives and review questions, plus the online learning environment includes additional complete practice tests. Written by Dan Sullivan, a popular and experienced online course author for machine learning, big data, and Cloud topics, Google Cloud Certified Professional Data Engineer Study Guide is your ace in the hole for deploying and managing analytics and machine learning applications. Build and operationalize storage systems, pipelines, and compute infrastructure Understand machine learning models and learn how to select pre-built models Monitor and troubleshoot machine learning models Design analytics and machine learning applications that are secure, scalable, and highly available. This exam guide is designed to help you develop an in depth understanding of data engineering and machine learning on Google Cloud Platform.

Cloud Analytics with Google Cloud Platform

Cloud Analytics with Google Cloud Platform PDF Author: Sanket Thodge
Publisher: Packt Publishing Ltd
ISBN: 1788838599
Category : Computers
Languages : en
Pages : 273

Book Description
Combine the power of analytics and cloud computing for faster and efficient insights Key Features Master the concept of analytics on the cloud: and how organizations are using it Learn the design considerations and while applying a cloud analytics solution Design an end-to-end analytics pipeline on the cloud Book Description With the ongoing data explosion, more and more organizations all over the world are slowly migrating their infrastructure to the cloud. These cloud platforms also provide their distinct analytics services to help you get faster insights from your data. This book will give you an introduction to the concept of analytics on the cloud, and the different cloud services popularly used for processing and analyzing data. If you’re planning to adopt the cloud analytics model for your business, this book will help you understand the design and business considerations to be kept in mind, and choose the best tools and alternatives for analytics, based on your requirements. The chapters in this book will take you through the 70+ services available in Google Cloud Platform and their implementation for practical purposes. From ingestion to processing your data, this book contains best practices on building an end-to-end analytics pipeline on the cloud by leveraging popular concepts such as machine learning and deep learning. By the end of this book, you will have a better understanding of cloud analytics as a concept as well as a practical know-how of its implementation What you will learn Explore the basics of cloud analytics and the major cloud solutions Learn how organizations are using cloud analytics to improve the ROI Explore the design considerations while adopting cloud services Work with the ingestion and storage tools of GCP such as Cloud Pub/Sub Process your data with tools such as Cloud Dataproc, BigQuery, etc Over 70 GCP tools to build an analytics engine for cloud analytics Implement machine learning and other AI techniques on GCP Who this book is for This book is targeted at CIOs, CTOs, and even analytics professionals looking for various alternatives to implement their analytics pipeline on the cloud. Data professionals looking to get started with cloud-based analytics will also find this book useful. Some basic exposure to cloud platforms such as GCP will be helpful, but not mandatory.

Professional Cloud Architect Google Cloud Certification Guide

Professional Cloud Architect Google Cloud Certification Guide PDF Author: Konrad Clapa
Publisher: Packt Publishing Ltd
ISBN: 1801811415
Category : Computers
Languages : en
Pages : 664

Book Description
Become a Professional Cloud Architect by exploring the essential concepts, tools, and services in GCP and working through practice tests designed to help you take the exam confidently Key FeaturesPlan and design a GCP cloud solution architectureEnsure the security and reliability of your cloud solutions and operationsAssess your knowledge by taking mock tests with up-to-date exam questionsBook Description Google Cloud Platform (GCP) is one of the industry leaders thanks to its array of services that can be leveraged by organizations to bring the best out of their infrastructure. This book is a comprehensive guide for learning methods to effectively utilize GCP services and help you become acquainted with the topics required to pass Google's Professional Cloud Architect certification exam. Following the Professional Cloud Architect's official exam syllabus, you'll first be introduced to the GCP. The book then covers the core services that GCP offers, such as computing and storage, and takes you through effective methods of scaling and automating your cloud infrastructure. As you progress through the chapters, you'll get to grips with containers and services and discover best practices related to the design and process. This revised second edition features new topics such as Cloud Run, Anthos, Data Fusion, Composer, and Data Catalog. By the end of this book, you'll have gained the knowledge required to take and pass the Google Cloud Certification – Professional Cloud Architect exam and become an expert in GCP services. What you will learnUnderstand the benefits of being a Google Certified Professional Cloud ArchitectFind out how to enroll for the Professional Cloud Architect examMaster the compute options in GCPExplore security and networking options in GCPGet to grips with managing and monitoring your workloads in GCPUnderstand storage, big data, and machine learning servicesBecome familiar with exam scenarios and passing strategiesWho this book is for If you are a cloud architect, cloud engineer, administrator, or any IT professional looking to learn how to implement Google Cloud services in your organization and become a GCP Certified Professional Cloud Architect, this book is for you. Basic knowledge of server infrastructure, including Linux and Windows Servers, is assumed. A solid understanding of network and storage will help you to make the most out of this book.