Author: John Garrett
Publisher: Cisco Press
ISBN: 0135183448
Category : Computers
Languages : en
Pages : 745
Book Description
Use data analytics to drive innovation and value throughout your network infrastructure Network and IT professionals capture immense amounts of data from their networks. Buried in this data are multiple opportunities to solve and avoid problems, strengthen security, and improve network performance. To achieve these goals, IT networking experts need a solid understanding of data science, and data scientists need a firm grasp of modern networking concepts. Data Analytics for IT Networks fills these knowledge gaps, allowing both groups to drive unprecedented value from telemetry, event analytics, network infrastructure metadata, and other network data sources. Drawing on his pioneering experience applying data science to large-scale Cisco networks, John Garrett introduces the specific data science methodologies and algorithms network and IT professionals need, and helps data scientists understand contemporary network technologies, applications, and data sources. After establishing this shared understanding, Garrett shows how to uncover innovative use cases that integrate data science algorithms with network data. He concludes with several hands-on, Python-based case studies reflecting Cisco Customer Experience (CX) engineers’ supporting its largest customers. These are designed to serve as templates for developing custom solutions ranging from advanced troubleshooting to service assurance. Understand the data analytics landscape and its opportunities in Networking See how elements of an analytics solution come together in the practical use cases Explore and access network data sources, and choose the right data for your problem Innovate more successfully by understanding mental models and cognitive biases Walk through common analytics use cases from many industries, and adapt them to your environment Uncover new data science use cases for optimizing large networks Master proven algorithms, models, and methodologies for solving network problems Adapt use cases built with traditional statistical methods Use data science to improve network infrastructure analysisAnalyze control and data planes with greater sophistication Fully leverage your existing Cisco tools to collect, analyze, and visualize data
Data Analytics for IT Networks
Author: John Garrett
Publisher: Cisco Press
ISBN: 0135183448
Category : Computers
Languages : en
Pages : 745
Book Description
Use data analytics to drive innovation and value throughout your network infrastructure Network and IT professionals capture immense amounts of data from their networks. Buried in this data are multiple opportunities to solve and avoid problems, strengthen security, and improve network performance. To achieve these goals, IT networking experts need a solid understanding of data science, and data scientists need a firm grasp of modern networking concepts. Data Analytics for IT Networks fills these knowledge gaps, allowing both groups to drive unprecedented value from telemetry, event analytics, network infrastructure metadata, and other network data sources. Drawing on his pioneering experience applying data science to large-scale Cisco networks, John Garrett introduces the specific data science methodologies and algorithms network and IT professionals need, and helps data scientists understand contemporary network technologies, applications, and data sources. After establishing this shared understanding, Garrett shows how to uncover innovative use cases that integrate data science algorithms with network data. He concludes with several hands-on, Python-based case studies reflecting Cisco Customer Experience (CX) engineers’ supporting its largest customers. These are designed to serve as templates for developing custom solutions ranging from advanced troubleshooting to service assurance. Understand the data analytics landscape and its opportunities in Networking See how elements of an analytics solution come together in the practical use cases Explore and access network data sources, and choose the right data for your problem Innovate more successfully by understanding mental models and cognitive biases Walk through common analytics use cases from many industries, and adapt them to your environment Uncover new data science use cases for optimizing large networks Master proven algorithms, models, and methodologies for solving network problems Adapt use cases built with traditional statistical methods Use data science to improve network infrastructure analysisAnalyze control and data planes with greater sophistication Fully leverage your existing Cisco tools to collect, analyze, and visualize data
Publisher: Cisco Press
ISBN: 0135183448
Category : Computers
Languages : en
Pages : 745
Book Description
Use data analytics to drive innovation and value throughout your network infrastructure Network and IT professionals capture immense amounts of data from their networks. Buried in this data are multiple opportunities to solve and avoid problems, strengthen security, and improve network performance. To achieve these goals, IT networking experts need a solid understanding of data science, and data scientists need a firm grasp of modern networking concepts. Data Analytics for IT Networks fills these knowledge gaps, allowing both groups to drive unprecedented value from telemetry, event analytics, network infrastructure metadata, and other network data sources. Drawing on his pioneering experience applying data science to large-scale Cisco networks, John Garrett introduces the specific data science methodologies and algorithms network and IT professionals need, and helps data scientists understand contemporary network technologies, applications, and data sources. After establishing this shared understanding, Garrett shows how to uncover innovative use cases that integrate data science algorithms with network data. He concludes with several hands-on, Python-based case studies reflecting Cisco Customer Experience (CX) engineers’ supporting its largest customers. These are designed to serve as templates for developing custom solutions ranging from advanced troubleshooting to service assurance. Understand the data analytics landscape and its opportunities in Networking See how elements of an analytics solution come together in the practical use cases Explore and access network data sources, and choose the right data for your problem Innovate more successfully by understanding mental models and cognitive biases Walk through common analytics use cases from many industries, and adapt them to your environment Uncover new data science use cases for optimizing large networks Master proven algorithms, models, and methodologies for solving network problems Adapt use cases built with traditional statistical methods Use data science to improve network infrastructure analysisAnalyze control and data planes with greater sophistication Fully leverage your existing Cisco tools to collect, analyze, and visualize data
Network Data Analytics
Author: K. G. Srinivasa
Publisher: Springer
ISBN: 3319778005
Category : Computers
Languages : en
Pages : 406
Book Description
In order to carry out data analytics, we need powerful and flexible computing software. However the software available for data analytics is often proprietary and can be expensive. This book reviews Apache tools, which are open source and easy to use. After providing an overview of the background of data analytics, covering the different types of analysis and the basics of using Hadoop as a tool, it focuses on different Hadoop ecosystem tools, like Apache Flume, Apache Spark, Apache Storm, Apache Hive, R, and Python, which can be used for different types of analysis. It then examines the different machine learning techniques that are useful for data analytics, and how to visualize data with different graphs and charts. Presenting data analytics from a practice-oriented viewpoint, the book discusses useful tools and approaches for data analytics, supported by concrete code examples. The book is a valuable reference resource for graduate students and professionals in related fields, and is also of interest to general readers with an understanding of data analytics.
Publisher: Springer
ISBN: 3319778005
Category : Computers
Languages : en
Pages : 406
Book Description
In order to carry out data analytics, we need powerful and flexible computing software. However the software available for data analytics is often proprietary and can be expensive. This book reviews Apache tools, which are open source and easy to use. After providing an overview of the background of data analytics, covering the different types of analysis and the basics of using Hadoop as a tool, it focuses on different Hadoop ecosystem tools, like Apache Flume, Apache Spark, Apache Storm, Apache Hive, R, and Python, which can be used for different types of analysis. It then examines the different machine learning techniques that are useful for data analytics, and how to visualize data with different graphs and charts. Presenting data analytics from a practice-oriented viewpoint, the book discusses useful tools and approaches for data analytics, supported by concrete code examples. The book is a valuable reference resource for graduate students and professionals in related fields, and is also of interest to general readers with an understanding of data analytics.
Social Network Data Analytics
Author: Charu C. Aggarwal
Publisher: Springer Science & Business Media
ISBN: 1441984623
Category : Computers
Languages : en
Pages : 508
Book Description
Social network analysis applications have experienced tremendous advances within the last few years due in part to increasing trends towards users interacting with each other on the internet. Social networks are organized as graphs, and the data on social networks takes on the form of massive streams, which are mined for a variety of purposes. Social Network Data Analytics covers an important niche in the social network analytics field. This edited volume, contributed by prominent researchers in this field, presents a wide selection of topics on social network data mining such as Structural Properties of Social Networks, Algorithms for Structural Discovery of Social Networks and Content Analysis in Social Networks. This book is also unique in focussing on the data analytical aspects of social networks in the internet scenario, rather than the traditional sociology-driven emphasis prevalent in the existing books, which do not focus on the unique data-intensive characteristics of online social networks. Emphasis is placed on simplifying the content so that students and practitioners benefit from this book. This book targets advanced level students and researchers concentrating on computer science as a secondary text or reference book. Data mining, database, information security, electronic commerce and machine learning professionals will find this book a valuable asset, as well as primary associations such as ACM, IEEE and Management Science.
Publisher: Springer Science & Business Media
ISBN: 1441984623
Category : Computers
Languages : en
Pages : 508
Book Description
Social network analysis applications have experienced tremendous advances within the last few years due in part to increasing trends towards users interacting with each other on the internet. Social networks are organized as graphs, and the data on social networks takes on the form of massive streams, which are mined for a variety of purposes. Social Network Data Analytics covers an important niche in the social network analytics field. This edited volume, contributed by prominent researchers in this field, presents a wide selection of topics on social network data mining such as Structural Properties of Social Networks, Algorithms for Structural Discovery of Social Networks and Content Analysis in Social Networks. This book is also unique in focussing on the data analytical aspects of social networks in the internet scenario, rather than the traditional sociology-driven emphasis prevalent in the existing books, which do not focus on the unique data-intensive characteristics of online social networks. Emphasis is placed on simplifying the content so that students and practitioners benefit from this book. This book targets advanced level students and researchers concentrating on computer science as a secondary text or reference book. Data mining, database, information security, electronic commerce and machine learning professionals will find this book a valuable asset, as well as primary associations such as ACM, IEEE and Management Science.
Implementing Data Analytics and Architectures for Next Generation Wireless Communications
Author: Bhatt, Chintan
Publisher: IGI Global
ISBN: 1799869903
Category : Technology & Engineering
Languages : en
Pages : 227
Book Description
Wireless communication is continuously evolving to improve and be a part of our daily communication. This leads to improved quality of services and applications supported by networking technologies. We are now able to use LTE, LTE-Advanced, and other emerging technologies due to the enormous efforts that are made to improve the quality of service in cellular networks. As the future of networking is uncertain, the use of deep learning and big data analytics is a point of focus as it can work in many capacities at a variety of levels for wireless communications. Implementing Data Analytics and Architectures for Next Generation Wireless Communications addresses the existing and emerging theoretical and practical challenges in the design, development, and implementation of big data algorithms, protocols, architectures, and applications for next generation wireless communications and their applications in smart cities. The chapters of this book bring together academics and industrial practitioners to exchange, discuss, and implement the latest innovations and applications of data analytics in advanced networks. Specific topics covered include key encryption techniques, smart home appliances, fog communication networks, and security in the internet of things. This book is valuable for technologists, data analysts, networking experts, practitioners, researchers, academicians, and students.
Publisher: IGI Global
ISBN: 1799869903
Category : Technology & Engineering
Languages : en
Pages : 227
Book Description
Wireless communication is continuously evolving to improve and be a part of our daily communication. This leads to improved quality of services and applications supported by networking technologies. We are now able to use LTE, LTE-Advanced, and other emerging technologies due to the enormous efforts that are made to improve the quality of service in cellular networks. As the future of networking is uncertain, the use of deep learning and big data analytics is a point of focus as it can work in many capacities at a variety of levels for wireless communications. Implementing Data Analytics and Architectures for Next Generation Wireless Communications addresses the existing and emerging theoretical and practical challenges in the design, development, and implementation of big data algorithms, protocols, architectures, and applications for next generation wireless communications and their applications in smart cities. The chapters of this book bring together academics and industrial practitioners to exchange, discuss, and implement the latest innovations and applications of data analytics in advanced networks. Specific topics covered include key encryption techniques, smart home appliances, fog communication networks, and security in the internet of things. This book is valuable for technologists, data analysts, networking experts, practitioners, researchers, academicians, and students.
Network Security Through Data Analysis
Author: Michael S Collins
Publisher: "O'Reilly Media, Inc."
ISBN: 1449357865
Category : Computers
Languages : en
Pages : 416
Book Description
Traditional intrusion detection and logfile analysis are no longer enough to protect today’s complex networks. In this practical guide, security researcher Michael Collins shows you several techniques and tools for collecting and analyzing network traffic datasets. You’ll understand how your network is used, and what actions are necessary to protect and improve it. Divided into three sections, this book examines the process of collecting and organizing data, various tools for analysis, and several different analytic scenarios and techniques. It’s ideal for network administrators and operational security analysts familiar with scripting. Explore network, host, and service sensors for capturing security data Store data traffic with relational databases, graph databases, Redis, and Hadoop Use SiLK, the R language, and other tools for analysis and visualization Detect unusual phenomena through Exploratory Data Analysis (EDA) Identify significant structures in networks with graph analysis Determine the traffic that’s crossing service ports in a network Examine traffic volume and behavior to spot DDoS and database raids Get a step-by-step process for network mapping and inventory
Publisher: "O'Reilly Media, Inc."
ISBN: 1449357865
Category : Computers
Languages : en
Pages : 416
Book Description
Traditional intrusion detection and logfile analysis are no longer enough to protect today’s complex networks. In this practical guide, security researcher Michael Collins shows you several techniques and tools for collecting and analyzing network traffic datasets. You’ll understand how your network is used, and what actions are necessary to protect and improve it. Divided into three sections, this book examines the process of collecting and organizing data, various tools for analysis, and several different analytic scenarios and techniques. It’s ideal for network administrators and operational security analysts familiar with scripting. Explore network, host, and service sensors for capturing security data Store data traffic with relational databases, graph databases, Redis, and Hadoop Use SiLK, the R language, and other tools for analysis and visualization Detect unusual phenomena through Exploratory Data Analysis (EDA) Identify significant structures in networks with graph analysis Determine the traffic that’s crossing service ports in a network Examine traffic volume and behavior to spot DDoS and database raids Get a step-by-step process for network mapping and inventory
Big Data Analytics for Sensor-Network Collected Intelligence
Author: Hui-Huang Hsu
Publisher: Morgan Kaufmann
ISBN: 012809625X
Category : Computers
Languages : en
Pages : 328
Book Description
Big Data Analytics for Sensor-Network Collected Intelligence explores state-of-the-art methods for using advanced ICT technologies to perform intelligent analysis on sensor collected data. The book shows how to develop systems that automatically detect natural and human-made events, how to examine people's behaviors, and how to unobtrusively provide better services. It begins by exploring big data architecture and platforms, covering the cloud computing infrastructure and how data is stored and visualized. The book then explores how big data is processed and managed, the key security and privacy issues involved, and the approaches used to ensure data quality. In addition, readers will find a thorough examination of big data analytics, analyzing statistical methods for data analytics and data mining, along with a detailed look at big data intelligence, ubiquitous and mobile computing, and designing intelligence system based on context and situation. Indexing: The books of this series are submitted to EI-Compendex and SCOPUS - Contains contributions from noted scholars in computer science and electrical engineering from around the globe - Provides a broad overview of recent developments in sensor collected intelligence - Edited by a team comprised of leading thinkers in big data analytics
Publisher: Morgan Kaufmann
ISBN: 012809625X
Category : Computers
Languages : en
Pages : 328
Book Description
Big Data Analytics for Sensor-Network Collected Intelligence explores state-of-the-art methods for using advanced ICT technologies to perform intelligent analysis on sensor collected data. The book shows how to develop systems that automatically detect natural and human-made events, how to examine people's behaviors, and how to unobtrusively provide better services. It begins by exploring big data architecture and platforms, covering the cloud computing infrastructure and how data is stored and visualized. The book then explores how big data is processed and managed, the key security and privacy issues involved, and the approaches used to ensure data quality. In addition, readers will find a thorough examination of big data analytics, analyzing statistical methods for data analytics and data mining, along with a detailed look at big data intelligence, ubiquitous and mobile computing, and designing intelligence system based on context and situation. Indexing: The books of this series are submitted to EI-Compendex and SCOPUS - Contains contributions from noted scholars in computer science and electrical engineering from around the globe - Provides a broad overview of recent developments in sensor collected intelligence - Edited by a team comprised of leading thinkers in big data analytics
Big Data and Networks Technologies
Author: Yousef Farhaoui
Publisher: Springer
ISBN: 3030236722
Category : Computers
Languages : en
Pages : 380
Book Description
This book reviews the state of the art in big data analysis and networks technologies. It addresses a range of issues that pertain to: signal processing, probability models, machine learning, data mining, databases, data engineering, pattern recognition, visualization, predictive analytics, data warehousing, data compression, computer programming, smart cities, networks technologies, etc. Data is becoming an increasingly decisive resource in modern societies, economies, and governmental organizations. In turn, data science inspires novel techniques and theories drawn from mathematics, statistics, information theory, computer science, and the social sciences. All papers presented here are the product of extensive field research involving applications and techniques related to data analysis in general, and to big data and networks technologies in particular. Given its scope, the book will appeal to advanced undergraduate and graduate students, postdoctoral researchers, lecturers and industrial researchers, as well general readers interested in big data analysis and networks technologies.
Publisher: Springer
ISBN: 3030236722
Category : Computers
Languages : en
Pages : 380
Book Description
This book reviews the state of the art in big data analysis and networks technologies. It addresses a range of issues that pertain to: signal processing, probability models, machine learning, data mining, databases, data engineering, pattern recognition, visualization, predictive analytics, data warehousing, data compression, computer programming, smart cities, networks technologies, etc. Data is becoming an increasingly decisive resource in modern societies, economies, and governmental organizations. In turn, data science inspires novel techniques and theories drawn from mathematics, statistics, information theory, computer science, and the social sciences. All papers presented here are the product of extensive field research involving applications and techniques related to data analysis in general, and to big data and networks technologies in particular. Given its scope, the book will appeal to advanced undergraduate and graduate students, postdoctoral researchers, lecturers and industrial researchers, as well general readers interested in big data analysis and networks technologies.
Data Analysis For Network Cyber-security
Author: Niall M Adams
Publisher: World Scientific
ISBN: 1783263768
Category : Mathematics
Languages : en
Pages : 200
Book Description
There is increasing pressure to protect computer networks against unauthorized intrusion, and some work in this area is concerned with engineering systems that are robust to attack. However, no system can be made invulnerable. Data Analysis for Network Cyber-Security focuses on monitoring and analyzing network traffic data, with the intention of preventing, or quickly identifying, malicious activity.Such work involves the intersection of statistics, data mining and computer science. Fundamentally, network traffic is relational, embodying a link between devices. As such, graph analysis approaches are a natural candidate. However, such methods do not scale well to the demands of real problems, and the critical aspect of the timing of communications events is not accounted for in these approaches.This book gathers papers from leading researchers to provide both background to the problems and a description of cutting-edge methodology. The contributors are from diverse institutions and areas of expertise and were brought together at a workshop held at the University of Bristol in March 2013 to address the issues of network cyber security. The workshop was supported by the Heilbronn Institute for Mathematical Research.
Publisher: World Scientific
ISBN: 1783263768
Category : Mathematics
Languages : en
Pages : 200
Book Description
There is increasing pressure to protect computer networks against unauthorized intrusion, and some work in this area is concerned with engineering systems that are robust to attack. However, no system can be made invulnerable. Data Analysis for Network Cyber-Security focuses on monitoring and analyzing network traffic data, with the intention of preventing, or quickly identifying, malicious activity.Such work involves the intersection of statistics, data mining and computer science. Fundamentally, network traffic is relational, embodying a link between devices. As such, graph analysis approaches are a natural candidate. However, such methods do not scale well to the demands of real problems, and the critical aspect of the timing of communications events is not accounted for in these approaches.This book gathers papers from leading researchers to provide both background to the problems and a description of cutting-edge methodology. The contributors are from diverse institutions and areas of expertise and were brought together at a workshop held at the University of Bristol in March 2013 to address the issues of network cyber security. The workshop was supported by the Heilbronn Institute for Mathematical Research.
Big Data Analytics in Cybersecurity
Author: Onur Savas
Publisher: CRC Press
ISBN: 1351650416
Category : Business & Economics
Languages : en
Pages : 452
Book Description
Big data is presenting challenges to cybersecurity. For an example, the Internet of Things (IoT) will reportedly soon generate a staggering 400 zettabytes (ZB) of data a year. Self-driving cars are predicted to churn out 4000 GB of data per hour of driving. Big data analytics, as an emerging analytical technology, offers the capability to collect, store, process, and visualize these vast amounts of data. Big Data Analytics in Cybersecurity examines security challenges surrounding big data and provides actionable insights that can be used to improve the current practices of network operators and administrators. Applying big data analytics in cybersecurity is critical. By exploiting data from the networks and computers, analysts can discover useful network information from data. Decision makers can make more informative decisions by using this analysis, including what actions need to be performed, and improvement recommendations to policies, guidelines, procedures, tools, and other aspects of the network processes. Bringing together experts from academia, government laboratories, and industry, the book provides insight to both new and more experienced security professionals, as well as data analytics professionals who have varying levels of cybersecurity expertise. It covers a wide range of topics in cybersecurity, which include: Network forensics Threat analysis Vulnerability assessment Visualization Cyber training. In addition, emerging security domains such as the IoT, cloud computing, fog computing, mobile computing, and cyber-social networks are examined. The book first focuses on how big data analytics can be used in different aspects of cybersecurity including network forensics, root-cause analysis, and security training. Next it discusses big data challenges and solutions in such emerging cybersecurity domains as fog computing, IoT, and mobile app security. The book concludes by presenting the tools and datasets for future cybersecurity research.
Publisher: CRC Press
ISBN: 1351650416
Category : Business & Economics
Languages : en
Pages : 452
Book Description
Big data is presenting challenges to cybersecurity. For an example, the Internet of Things (IoT) will reportedly soon generate a staggering 400 zettabytes (ZB) of data a year. Self-driving cars are predicted to churn out 4000 GB of data per hour of driving. Big data analytics, as an emerging analytical technology, offers the capability to collect, store, process, and visualize these vast amounts of data. Big Data Analytics in Cybersecurity examines security challenges surrounding big data and provides actionable insights that can be used to improve the current practices of network operators and administrators. Applying big data analytics in cybersecurity is critical. By exploiting data from the networks and computers, analysts can discover useful network information from data. Decision makers can make more informative decisions by using this analysis, including what actions need to be performed, and improvement recommendations to policies, guidelines, procedures, tools, and other aspects of the network processes. Bringing together experts from academia, government laboratories, and industry, the book provides insight to both new and more experienced security professionals, as well as data analytics professionals who have varying levels of cybersecurity expertise. It covers a wide range of topics in cybersecurity, which include: Network forensics Threat analysis Vulnerability assessment Visualization Cyber training. In addition, emerging security domains such as the IoT, cloud computing, fog computing, mobile computing, and cyber-social networks are examined. The book first focuses on how big data analytics can be used in different aspects of cybersecurity including network forensics, root-cause analysis, and security training. Next it discusses big data challenges and solutions in such emerging cybersecurity domains as fog computing, IoT, and mobile app security. The book concludes by presenting the tools and datasets for future cybersecurity research.
Big Data Analytics
Author: Mrutyunjaya Panda
Publisher: CRC Press
ISBN: 1351622595
Category : Business & Economics
Languages : en
Pages : 323
Book Description
Social networking has increased drastically in recent years, resulting in an increased amount of data being created daily. Furthermore, diversity of issues and complexity of the social networks pose a challenge in social network mining. Traditional algorithm software cannot deal with such complex and vast amounts of data, necessitating the development of novel analytic approaches and tools. This reference work deals with social network aspects of big data analytics. It covers theory, practices and challenges in social networking. The book spans numerous disciplines like neural networking, deep learning, artificial intelligence, visualization, e-learning in higher education, e-healthcare, security and intrusion detection.
Publisher: CRC Press
ISBN: 1351622595
Category : Business & Economics
Languages : en
Pages : 323
Book Description
Social networking has increased drastically in recent years, resulting in an increased amount of data being created daily. Furthermore, diversity of issues and complexity of the social networks pose a challenge in social network mining. Traditional algorithm software cannot deal with such complex and vast amounts of data, necessitating the development of novel analytic approaches and tools. This reference work deals with social network aspects of big data analytics. It covers theory, practices and challenges in social networking. The book spans numerous disciplines like neural networking, deep learning, artificial intelligence, visualization, e-learning in higher education, e-healthcare, security and intrusion detection.