Eddy Current Approximation of Maxwell Equations PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Eddy Current Approximation of Maxwell Equations PDF full book. Access full book title Eddy Current Approximation of Maxwell Equations by Ana Alonso Rodriguez. Download full books in PDF and EPUB format.

Eddy Current Approximation of Maxwell Equations

Eddy Current Approximation of Maxwell Equations PDF Author: Ana Alonso Rodriguez
Publisher: Springer Science & Business Media
ISBN: 8847015065
Category : Mathematics
Languages : en
Pages : 355

Book Description
This book deals with the mathematical analysis and the numerical approximation of eddy current problems in the time-harmonic case. It takes into account all the most used formulations, placing the problem in a rigorous functional framework.

Eddy Current Approximation of Maxwell Equations

Eddy Current Approximation of Maxwell Equations PDF Author: Ana Alonso Rodriguez
Publisher: Springer Science & Business Media
ISBN: 8847015065
Category : Mathematics
Languages : en
Pages : 355

Book Description
This book deals with the mathematical analysis and the numerical approximation of eddy current problems in the time-harmonic case. It takes into account all the most used formulations, placing the problem in a rigorous functional framework.

A Student's Guide to Maxwell's Equations

A Student's Guide to Maxwell's Equations PDF Author: Daniel Fleisch
Publisher: Cambridge University Press
ISBN: 1139468472
Category : Science
Languages : en
Pages : 129

Book Description
Gauss's law for electric fields, Gauss's law for magnetic fields, Faraday's law, and the Ampere–Maxwell law are four of the most influential equations in science. In this guide for students, each equation is the subject of an entire chapter, with detailed, plain-language explanations of the physical meaning of each symbol in the equation, for both the integral and differential forms. The final chapter shows how Maxwell's equations may be combined to produce the wave equation, the basis for the electromagnetic theory of light. This book is a wonderful resource for undergraduate and graduate courses in electromagnetism and electromagnetics. A website hosted by the author at www.cambridge.org/9780521701471 contains interactive solutions to every problem in the text as well as audio podcasts to walk students through each chapter.

Magnetoencephalography

Magnetoencephalography PDF Author: Selma Supek
Publisher: Springer
ISBN: 3642330452
Category : Technology & Engineering
Languages : en
Pages : 999

Book Description
Magnetoencephalography (MEG) is an invaluable functional brain imaging technique that provides direct, real-time monitoring of neuronal activity necessary for gaining insight into dynamic cortical networks. Our intentions with this book are to cover the richness and transdisciplinary nature of the MEG field, make it more accessible to newcomers and experienced researchers and to stimulate growth in the MEG area. The book presents a comprehensive overview of MEG basics and the latest developments in methodological, empirical and clinical research, directed toward master and doctoral students, as well as researchers. There are three levels of contributions: 1) tutorials on instrumentation, measurements, modeling, and experimental design; 2) topical reviews providing extensive coverage of relevant research topics; and 3) short contributions on open, challenging issues, future developments and novel applications. The topics range from neuromagnetic measurements, signal processing and source localization techniques to dynamic functional networks underlying perception and cognition in both health and disease. Topical reviews cover, among others: development on SQUID-based and novel sensors, multi-modal integration (low field MRI and MEG; EEG and fMRI), Bayesian approaches to multi-modal integration, direct neuronal imaging, novel noise reduction methods, source-space functional analysis, decoding of brain states, dynamic brain connectivity, sensory-motor integration, MEG studies on perception and cognition, thalamocortical oscillations, fetal and neonatal MEG, pediatric MEG studies, cognitive development, clinical applications of MEG in epilepsy, pre-surgical mapping, stroke, schizophrenia, stuttering, traumatic brain injury, post-traumatic stress disorder, depression, autism, aging and neurodegeneration, MEG applications in cognitive neuropharmacology and an overview of the major open-source analysis tools.

Eddy Current Approximation of Maxwell Equations

Eddy Current Approximation of Maxwell Equations PDF Author: Ana Alonso Rodriguez
Publisher: Springer
ISBN: 9788847015050
Category : Mathematics
Languages : en
Pages : 347

Book Description
This book deals with the mathematical analysis and the numerical approximation of eddy current problems in the time-harmonic case. It takes into account all the most used formulations, placing the problem in a rigorous functional framework.

University Physics

University Physics PDF Author: Samuel J. Ling
Publisher:
ISBN: 9789888407613
Category : Science
Languages : en
Pages : 818

Book Description
University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME II Unit 1: Thermodynamics Chapter 1: Temperature and Heat Chapter 2: The Kinetic Theory of Gases Chapter 3: The First Law of Thermodynamics Chapter 4: The Second Law of Thermodynamics Unit 2: Electricity and Magnetism Chapter 5: Electric Charges and Fields Chapter 6: Gauss's Law Chapter 7: Electric Potential Chapter 8: Capacitance Chapter 9: Current and Resistance Chapter 10: Direct-Current Circuits Chapter 11: Magnetic Forces and Fields Chapter 12: Sources of Magnetic Fields Chapter 13: Electromagnetic Induction Chapter 14: Inductance Chapter 15: Alternating-Current Circuits Chapter 16: Electromagnetic Waves

Maxwell’s Equations

Maxwell’s Equations PDF Author: Ulrich Langer
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110543613
Category : Mathematics
Languages : en
Pages : 446

Book Description
This volume collects longer articles on the analysis and numerics of Maxwell’s equations. The topics include functional analytic and Hilbert space methods, compact embeddings, solution theories and asymptotics, electromagnetostatics, time-harmonic Maxwell’s equations, time-dependent Maxwell’s equations, eddy current approximations, scattering and radiation problems, inverse problems, finite element methods, boundary element methods, and isogeometric analysis.

Electromagnetism

Electromagnetism PDF Author: Tamer Becherrawy
Publisher: John Wiley & Sons
ISBN: 1118587774
Category : Science
Languages : en
Pages : 442

Book Description
This book deals with electromagnetic theory and its applications at the level of a senior-level undergraduate course for science and engineering. The basic concepts and mathematical analysis are clearly developed and the important applications are analyzed. Each chapter contains numerous problems ranging in difficulty from simple applications to challenging. The answers for the problems are given at the end of the book. Some chapters which open doors to more advanced topics, such as wave theory, special relativity, emission of radiation by charges and antennas, are included. The material of this book allows flexibility in the choice of the topics covered. Knowledge of basic calculus (vectors, differential equations and integration) and general physics is assumed. The required mathematical techniques are gradually introduced. After a detailed revision of time-independent phenomena in electrostatics and magnetism in vacuum, the electric and magnetic properties of matter are discussed. Induction, Maxwell equations and electromagnetic waves, their reflection, refraction, interference and diffraction are also studied in some detail. Four additional topics are introduced: guided waves, relativistic electrodynamics, particles in an electromagnetic field and emission of radiation. A useful appendix on mathematics, units and physical constants is included. Contents 1. Prologue. 2. Electrostatics in Vacuum. 3. Conductors and Currents. 4. Dielectrics. 5. Special Techniques and Approximation Methods. 6. Magnetic Field in Vacuum. 7. Magnetism in Matter. 8. Induction. 9. Maxwell’s Equations. 10. Electromagnetic Waves. 11. Reflection, Interference, Diffraction and Diffusion. 12. Guided Waves. 13. Special Relativity and Electrodynamics. 14. Motion of Charged Particles in an Electromagnetic Field. 15. Emission of Radiation.

The Maxwellians

The Maxwellians PDF Author: Bruce J. Hunt
Publisher: Cornell University Press
ISBN: 9780801482342
Category : Biography & Autobiography
Languages : en
Pages : 284

Book Description
James Clerk Maxwell published the Treatise on Electricity and Magnetism in 1873. At his death, six years later, his theory of the electromagnetic field was neither well understood nor widely accepted. By the mid-1890s, however, it was regarded as one of the most fundamental and fruitful of all physical theories. Bruce J. Hunt examines the joint work of a group of young British physicists--G. F. FitzGerald, Oliver Heaviside, and Oliver Lodge--along with a key German contributor, Heinrich Hertz. It was these "Maxwellians" who transformed the fertile but half-finished ideas presented in the Treatise into the concise and powerful system now known as "Maxwell's theory."

High-frequency Electrodynamics

High-frequency Electrodynamics PDF Author: Boris Z. Katsenelenbaum
Publisher: John Wiley & Sons
ISBN: 3527608303
Category : Science
Languages : en
Pages : 342

Book Description
This first book to develop the theoretical basics from the concept of guided wave optics is all set to become a standard in fundamental concepts of electromagnetic waves within the field of telecommunications. Maxwell equations Plane waves Closed waveguides Closed Resonators Open Lines Backgrounds of Antenna Theory Diffraction on Metallic and Dielectric Objects Complementary References With its chapters on high frequency waveguides this book is aimed at both scientists and professionals in electrical engineering and telecommunications.

Numerical Approximations of Stochastic Maxwell Equations

Numerical Approximations of Stochastic Maxwell Equations PDF Author: Chuchu Chen
Publisher: Springer Nature
ISBN: 9819966868
Category : Mathematics
Languages : en
Pages : 293

Book Description
The stochastic Maxwell equations play an essential role in many fields, including fluctuational electrodynamics, statistical radiophysics, integrated circuits, and stochastic inverse problems. This book provides some recent advances in the investigation of numerical approximations of the stochastic Maxwell equations via structure-preserving algorithms. It presents an accessible overview of the construction and analysis of structure-preserving algorithms with an emphasis on the preservation of geometric structures, physical properties, and asymptotic behaviors of the stochastic Maxwell equations. A friendly introduction to the simulation of the stochastic Maxwell equations with some structure-preserving algorithms is provided using MATLAB for the reader’s convenience. The objects considered in this book are related to several fascinating mathematical fields: numerical analysis, stochastic analysis, (multi-)symplectic geometry, large deviations principle, ergodic theory, partial differential equation, probability theory, etc. This book will appeal to researchers who are interested in these topics.