Author: Arthur S. Nowick
Publisher: Cambridge University Press
ISBN: 052141945X
Category : Mathematics
Languages : en
Pages : 246
Book Description
This book deals with the effect of crystal symmetry in determining the tensor properties of crystals. Although this is a well-established subject, the author provides a new approach using group theory and, in particular, the method of symmetry coordinates, which has not been used in any previous book. Using this approach, all tensors of a given rank and type can be handled together, even when they involve very different physical phenomena. Applications to technologically important phenomena as diverse as the electro-optic, piezoelectric, photoelastic, piezomagnetic, and piezoresistance effects, as well as magnetothermoelectric power and third-order elastic constants, are presented. Attention is also given to 'special magnetic properties', that is those that require the concepts of time reversal and magnetic symmetry, an important subject not always covered in other books in this area. This book will be of interest to researchers in solid-state physics and materials science, and will also be suitable as a text for graduate students in physics and engineering taking courses in solid-state physics.
Crystal Properties Via Group Theory
Author: Arthur S. Nowick
Publisher: Cambridge University Press
ISBN: 052141945X
Category : Mathematics
Languages : en
Pages : 246
Book Description
This book deals with the effect of crystal symmetry in determining the tensor properties of crystals. Although this is a well-established subject, the author provides a new approach using group theory and, in particular, the method of symmetry coordinates, which has not been used in any previous book. Using this approach, all tensors of a given rank and type can be handled together, even when they involve very different physical phenomena. Applications to technologically important phenomena as diverse as the electro-optic, piezoelectric, photoelastic, piezomagnetic, and piezoresistance effects, as well as magnetothermoelectric power and third-order elastic constants, are presented. Attention is also given to 'special magnetic properties', that is those that require the concepts of time reversal and magnetic symmetry, an important subject not always covered in other books in this area. This book will be of interest to researchers in solid-state physics and materials science, and will also be suitable as a text for graduate students in physics and engineering taking courses in solid-state physics.
Publisher: Cambridge University Press
ISBN: 052141945X
Category : Mathematics
Languages : en
Pages : 246
Book Description
This book deals with the effect of crystal symmetry in determining the tensor properties of crystals. Although this is a well-established subject, the author provides a new approach using group theory and, in particular, the method of symmetry coordinates, which has not been used in any previous book. Using this approach, all tensors of a given rank and type can be handled together, even when they involve very different physical phenomena. Applications to technologically important phenomena as diverse as the electro-optic, piezoelectric, photoelastic, piezomagnetic, and piezoresistance effects, as well as magnetothermoelectric power and third-order elastic constants, are presented. Attention is also given to 'special magnetic properties', that is those that require the concepts of time reversal and magnetic symmetry, an important subject not always covered in other books in this area. This book will be of interest to researchers in solid-state physics and materials science, and will also be suitable as a text for graduate students in physics and engineering taking courses in solid-state physics.
Symmetry, Group Theory, and the Physical Properties of Crystals
Author: Richard C Powell
Publisher: Springer
ISBN: 1441975985
Category : Science
Languages : en
Pages : 238
Book Description
Complete with reference tables and sample problems, this volume serves as a textbook or reference for solid-state physics and chemistry, materials science, and engineering. Chapters illustrate symmetry, and its role in determining solid properties, as well as a demonstration of group theory.
Publisher: Springer
ISBN: 1441975985
Category : Science
Languages : en
Pages : 238
Book Description
Complete with reference tables and sample problems, this volume serves as a textbook or reference for solid-state physics and chemistry, materials science, and engineering. Chapters illustrate symmetry, and its role in determining solid properties, as well as a demonstration of group theory.
Group Theory with Applications in Chemical Physics
Author: Patrick W. M. Jacobs
Publisher: Cambridge University Press
ISBN: 9780521642507
Category : Mathematics
Languages : en
Pages : 520
Book Description
This book provides a rigorous account on the fundamentals and applications of Group Theory to chemical physics.
Publisher: Cambridge University Press
ISBN: 9780521642507
Category : Mathematics
Languages : en
Pages : 520
Book Description
This book provides a rigorous account on the fundamentals and applications of Group Theory to chemical physics.
Group Theory in Solid State Physics and Photonics
Author: Wolfram Hergert
Publisher: John Wiley & Sons
ISBN: 352741133X
Category : Science
Languages : en
Pages : 387
Book Description
While group theory and its application to solid state physics is well established, this textbook raises two completely new aspects. First, it provides a better understanding by focusing on problem solving and making extensive use of Mathematica tools to visualize the concepts. Second, it offers a new tool for the photonics community by transferring the concepts of group theory and its application to photonic crystals. Clearly divided into three parts, the first provides the basics of group theory. Even at this stage, the authors go beyond the widely used standard examples to show the broad field of applications. Part II is devoted to applications in condensed matter physics, i.e. the electronic structure of materials. Combining the application of the computer algebra system Mathematica with pen and paper derivations leads to a better and faster understanding. The exhaustive discussion shows that the basics of group theory can also be applied to a totally different field, as seen in Part III. Here, photonic applications are discussed in parallel to the electronic case, with the focus on photonic crystals in two and three dimensions, as well as being partially expanded to other problems in the field of photonics. The authors have developed Mathematica package GTPack which is available for download from the book's homepage. Analytic considerations, numerical calculations and visualization are carried out using the same software. While the use of the Mathematica tools are demonstrated on elementary examples, they can equally be applied to more complicated tasks resulting from the reader's own research.
Publisher: John Wiley & Sons
ISBN: 352741133X
Category : Science
Languages : en
Pages : 387
Book Description
While group theory and its application to solid state physics is well established, this textbook raises two completely new aspects. First, it provides a better understanding by focusing on problem solving and making extensive use of Mathematica tools to visualize the concepts. Second, it offers a new tool for the photonics community by transferring the concepts of group theory and its application to photonic crystals. Clearly divided into three parts, the first provides the basics of group theory. Even at this stage, the authors go beyond the widely used standard examples to show the broad field of applications. Part II is devoted to applications in condensed matter physics, i.e. the electronic structure of materials. Combining the application of the computer algebra system Mathematica with pen and paper derivations leads to a better and faster understanding. The exhaustive discussion shows that the basics of group theory can also be applied to a totally different field, as seen in Part III. Here, photonic applications are discussed in parallel to the electronic case, with the focus on photonic crystals in two and three dimensions, as well as being partially expanded to other problems in the field of photonics. The authors have developed Mathematica package GTPack which is available for download from the book's homepage. Analytic considerations, numerical calculations and visualization are carried out using the same software. While the use of the Mathematica tools are demonstrated on elementary examples, they can equally be applied to more complicated tasks resulting from the reader's own research.
Applications of Group Theory to Atoms, Molecules, and Solids
Author: Thomas Wolfram
Publisher: Cambridge University Press
ISBN: 1107028523
Category : Mathematics
Languages : en
Pages : 485
Book Description
An applications-oriented approach gives graduate students and researchers in the physical sciences the tools needed to analyze any physical system.
Publisher: Cambridge University Press
ISBN: 1107028523
Category : Mathematics
Languages : en
Pages : 485
Book Description
An applications-oriented approach gives graduate students and researchers in the physical sciences the tools needed to analyze any physical system.
Crystal Properties via Group Theory
Author: Arthur S. Nowick
Publisher: Cambridge University Press
ISBN: 9780521419451
Category : Science
Languages : en
Pages : 246
Book Description
This book deals with the effect of crystal symmetry in determining the tensor properties of crystals. Although this is a well-established subject, the author provides a new approach using group theory and, in particular, the method of symmetry coordinates, which has not been used in any previous book. The author presents applications to technologically important phenomena as diverse as the electro-optic, piezoelectric, photoelastic, piezomagnetic, and piezoresistance effects, as well as magnetothermoelectric power and third-order elastic constants. He also gives attention to "special magnetic properties", i.e., those that require the concepts of time reversal and magnetic symmetry--an important subject not always covered in other books in this area. This book will be of interest to researchers in solid state physics and materials science, and will also be suitable as a text for graduate students in physics and engineering taking courses in solid state physics.
Publisher: Cambridge University Press
ISBN: 9780521419451
Category : Science
Languages : en
Pages : 246
Book Description
This book deals with the effect of crystal symmetry in determining the tensor properties of crystals. Although this is a well-established subject, the author provides a new approach using group theory and, in particular, the method of symmetry coordinates, which has not been used in any previous book. The author presents applications to technologically important phenomena as diverse as the electro-optic, piezoelectric, photoelastic, piezomagnetic, and piezoresistance effects, as well as magnetothermoelectric power and third-order elastic constants. He also gives attention to "special magnetic properties", i.e., those that require the concepts of time reversal and magnetic symmetry--an important subject not always covered in other books in this area. This book will be of interest to researchers in solid state physics and materials science, and will also be suitable as a text for graduate students in physics and engineering taking courses in solid state physics.
Group Theory and Quantum Mechanics
Author: Michael Tinkham
Publisher: Courier Corporation
ISBN: 0486131661
Category : Science
Languages : en
Pages : 354
Book Description
This graduate-level text develops the aspects of group theory most relevant to physics and chemistry (such as the theory of representations) and illustrates their applications to quantum mechanics. The first five chapters focus chiefly on the introduction of methods, illustrated by physical examples, and the final three chapters offer a systematic treatment of the quantum theory of atoms, molecules, and solids. The formal theory of finite groups and their representation is developed in Chapters 1 through 4 and illustrated by examples from the crystallographic point groups basic to solid-state and molecular theory. Chapter 5 is devoted to the theory of systems with full rotational symmetry, Chapter 6 to the systematic presentation of atomic structure, and Chapter 7 to molecular quantum mechanics. Chapter 8, which deals with solid-state physics, treats electronic energy band theory and magnetic crystal symmetry. A compact and worthwhile compilation of the scattered material on standard methods, this volume presumes a basic understanding of quantum theory.
Publisher: Courier Corporation
ISBN: 0486131661
Category : Science
Languages : en
Pages : 354
Book Description
This graduate-level text develops the aspects of group theory most relevant to physics and chemistry (such as the theory of representations) and illustrates their applications to quantum mechanics. The first five chapters focus chiefly on the introduction of methods, illustrated by physical examples, and the final three chapters offer a systematic treatment of the quantum theory of atoms, molecules, and solids. The formal theory of finite groups and their representation is developed in Chapters 1 through 4 and illustrated by examples from the crystallographic point groups basic to solid-state and molecular theory. Chapter 5 is devoted to the theory of systems with full rotational symmetry, Chapter 6 to the systematic presentation of atomic structure, and Chapter 7 to molecular quantum mechanics. Chapter 8, which deals with solid-state physics, treats electronic energy band theory and magnetic crystal symmetry. A compact and worthwhile compilation of the scattered material on standard methods, this volume presumes a basic understanding of quantum theory.
Group Theory
Author: Mildred S. Dresselhaus
Publisher: Springer Science & Business Media
ISBN: 3540328998
Category : Science
Languages : en
Pages : 576
Book Description
This concise, class-tested book was refined over the authors’ 30 years as instructors at MIT and the University Federal of Minas Gerais (UFMG) in Brazil. The approach centers on the conviction that teaching group theory along with applications helps students to learn, understand and use it for their own needs. Thus, the theoretical background is confined to introductory chapters. Subsequent chapters develop new theory alongside applications so that students can retain new concepts, build on concepts already learned, and see interrelations between topics. Essential problem sets between chapters aid retention of new material and consolidate material learned in previous chapters.
Publisher: Springer Science & Business Media
ISBN: 3540328998
Category : Science
Languages : en
Pages : 576
Book Description
This concise, class-tested book was refined over the authors’ 30 years as instructors at MIT and the University Federal of Minas Gerais (UFMG) in Brazil. The approach centers on the conviction that teaching group theory along with applications helps students to learn, understand and use it for their own needs. Thus, the theoretical background is confined to introductory chapters. Subsequent chapters develop new theory alongside applications so that students can retain new concepts, build on concepts already learned, and see interrelations between topics. Essential problem sets between chapters aid retention of new material and consolidate material learned in previous chapters.
Theory of Crystal Space Groups and Lattice Dynamics
Author: J. L. Birman
Publisher: Springer Science & Business Media
ISBN: 3642697070
Category : Science
Languages : en
Pages : 558
Book Description
Reissue of Encyclopedia of Physics/Handbuch der Physik, Vol. XXV/2b I am very pleased that my book is now to be reprinted and rebound in a new format which should make it accessible at a modest price to students and active researchers in condensed matter physics. In writing this book I had in mind an audience of physicists and chemists with no previous deep exposure to symmetry analysis of crystalline matter, non to the use of symmetry in simplifying and refining predictions of the results of optical experiments. Hence the book was written to explain and illustrate in all necessary detail how to: 1) describe the space group symmetry in terms of space group symmetry operations; 2) obtain irreducible representations and selection rules for optical infra-red and Raman and other transition processes. On the physical side I redeveloped the traditional theory of classical and quantum lattice dynamics, illustrating how space-time symmetry designations in the equations of motion can: 1) simplify and rationalize calculations of the classical eigenvectors of the dynamical equation; 2) permit classification of the eigenstates of the quantum lattice-dynamic pro blem; 3) give specific selection rules for optical infra-red and Raman lattice processes, and thus make "go, no-go" predictions including polarization of absorbed or scattered radiation; and 4) simplify the modern many-body theories of optical processes.
Publisher: Springer Science & Business Media
ISBN: 3642697070
Category : Science
Languages : en
Pages : 558
Book Description
Reissue of Encyclopedia of Physics/Handbuch der Physik, Vol. XXV/2b I am very pleased that my book is now to be reprinted and rebound in a new format which should make it accessible at a modest price to students and active researchers in condensed matter physics. In writing this book I had in mind an audience of physicists and chemists with no previous deep exposure to symmetry analysis of crystalline matter, non to the use of symmetry in simplifying and refining predictions of the results of optical experiments. Hence the book was written to explain and illustrate in all necessary detail how to: 1) describe the space group symmetry in terms of space group symmetry operations; 2) obtain irreducible representations and selection rules for optical infra-red and Raman and other transition processes. On the physical side I redeveloped the traditional theory of classical and quantum lattice dynamics, illustrating how space-time symmetry designations in the equations of motion can: 1) simplify and rationalize calculations of the classical eigenvectors of the dynamical equation; 2) permit classification of the eigenstates of the quantum lattice-dynamic pro blem; 3) give specific selection rules for optical infra-red and Raman lattice processes, and thus make "go, no-go" predictions including polarization of absorbed or scattered radiation; and 4) simplify the modern many-body theories of optical processes.
Crystal Symmetry, Lattice Vibrations, And Optical Spectroscopy Of Solids: A Group Theoretical Approach
Author: Baldassare Di Bartolo
Publisher: World Scientific
ISBN: 9814579238
Category : Science
Languages : en
Pages : 534
Book Description
This book provides a comprehensive treatment of the two fundamental aspects of a solid that determine its physical properties: lattice structure and atomic vibrations (phonons). The elements of group theory are extensively developed and used as a tool to show how the symmetry of a solid and the vibrations of the atoms in the solid lead to the physical properties of the material. The uses of different types of spectroscopy techniques that elucidate the lattice structure of a solid and the normal vibrational modes of the atoms in the solid are described. The interaction of light with solids (optical spectroscopy) is described in detail including how lattice symmetry and phonons affect the spectral properties and how spectral properties provide information about the material's symmetry and normal modes of lattice vibrations. The effects of point defects (doping) on the lattice symmetry and atomic vibrations and thus the spectral properties are discussed and used to show how material symmetry and lattice vibrations are critical in determining the properties of solid state lasers.
Publisher: World Scientific
ISBN: 9814579238
Category : Science
Languages : en
Pages : 534
Book Description
This book provides a comprehensive treatment of the two fundamental aspects of a solid that determine its physical properties: lattice structure and atomic vibrations (phonons). The elements of group theory are extensively developed and used as a tool to show how the symmetry of a solid and the vibrations of the atoms in the solid lead to the physical properties of the material. The uses of different types of spectroscopy techniques that elucidate the lattice structure of a solid and the normal vibrational modes of the atoms in the solid are described. The interaction of light with solids (optical spectroscopy) is described in detail including how lattice symmetry and phonons affect the spectral properties and how spectral properties provide information about the material's symmetry and normal modes of lattice vibrations. The effects of point defects (doping) on the lattice symmetry and atomic vibrations and thus the spectral properties are discussed and used to show how material symmetry and lattice vibrations are critical in determining the properties of solid state lasers.