Author: Jan von Plato
Publisher: Cambridge University Press
ISBN: 9780521597357
Category : Mathematics
Languages : en
Pages : 336
Book Description
In this book the author charts the history and development of modern probability theory.
Creating Modern Probability
Author: Jan von Plato
Publisher: Cambridge University Press
ISBN: 9780521597357
Category : Mathematics
Languages : en
Pages : 336
Book Description
In this book the author charts the history and development of modern probability theory.
Publisher: Cambridge University Press
ISBN: 9780521597357
Category : Mathematics
Languages : en
Pages : 336
Book Description
In this book the author charts the history and development of modern probability theory.
Foundations of Modern Probability
Author: Olav Kallenberg
Publisher: Springer Science & Business Media
ISBN: 9780387953137
Category : Mathematics
Languages : en
Pages : 670
Book Description
The first edition of this single volume on the theory of probability has become a highly-praised standard reference for many areas of probability theory. Chapters from the first edition have been revised and corrected, and this edition contains four new chapters. New material covered includes multivariate and ratio ergodic theorems, shift coupling, Palm distributions, Harris recurrence, invariant measures, and strong and weak ergodicity.
Publisher: Springer Science & Business Media
ISBN: 9780387953137
Category : Mathematics
Languages : en
Pages : 670
Book Description
The first edition of this single volume on the theory of probability has become a highly-praised standard reference for many areas of probability theory. Chapters from the first edition have been revised and corrected, and this edition contains four new chapters. New material covered includes multivariate and ratio ergodic theorems, shift coupling, Palm distributions, Harris recurrence, invariant measures, and strong and weak ergodicity.
A Modern Introduction to Probability and Statistics
Author: F.M. Dekking
Publisher: Springer Science & Business Media
ISBN: 1846281687
Category : Mathematics
Languages : en
Pages : 485
Book Description
Suitable for self study Use real examples and real data sets that will be familiar to the audience Introduction to the bootstrap is included – this is a modern method missing in many other books
Publisher: Springer Science & Business Media
ISBN: 1846281687
Category : Mathematics
Languages : en
Pages : 485
Book Description
Suitable for self study Use real examples and real data sets that will be familiar to the audience Introduction to the bootstrap is included – this is a modern method missing in many other books
Probability
Author: Davar Khoshnevisan
Publisher: American Mathematical Soc.
ISBN: 9780821884010
Category : Mathematics
Languages : en
Pages : 248
Book Description
This is a textbook for a one-semester graduate course in measure-theoretic probability theory, but with ample material to cover an ordinary year-long course at a more leisurely pace. Khoshnevisan's approach is to develop the ideas that are absolutely central to modern probability theory, and to showcase them by presenting their various applications. As a result, a few of the familiar topics are replaced by interesting non-standard ones. The topics range from undergraduate probability and classical limit theorems to Brownian motion and elements of stochastic calculus. Throughout, the reader will find many exciting applications of probability theory and probabilistic reasoning. There are numerous exercises, ranging from the routine to the very difficult. Each chapter concludes with historical notes.
Publisher: American Mathematical Soc.
ISBN: 9780821884010
Category : Mathematics
Languages : en
Pages : 248
Book Description
This is a textbook for a one-semester graduate course in measure-theoretic probability theory, but with ample material to cover an ordinary year-long course at a more leisurely pace. Khoshnevisan's approach is to develop the ideas that are absolutely central to modern probability theory, and to showcase them by presenting their various applications. As a result, a few of the familiar topics are replaced by interesting non-standard ones. The topics range from undergraduate probability and classical limit theorems to Brownian motion and elements of stochastic calculus. Throughout, the reader will find many exciting applications of probability theory and probabilistic reasoning. There are numerous exercises, ranging from the routine to the very difficult. Each chapter concludes with historical notes.
Mathematics of Probability
Author: Daniel W. Stroock
Publisher: American Mathematical Soc.
ISBN: 1470409070
Category : Mathematics
Languages : en
Pages : 299
Book Description
This book covers the basics of modern probability theory. It begins with probability theory on finite and countable sample spaces and then passes from there to a concise course on measure theory, which is followed by some initial applications to probability theory, including independence and conditional expectations. The second half of the book deals with Gaussian random variables, with Markov chains, with a few continuous parameter processes, including Brownian motion, and, finally, with martingales, both discrete and continuous parameter ones. The book is a self-contained introduction to probability theory and the measure theory required to study it.
Publisher: American Mathematical Soc.
ISBN: 1470409070
Category : Mathematics
Languages : en
Pages : 299
Book Description
This book covers the basics of modern probability theory. It begins with probability theory on finite and countable sample spaces and then passes from there to a concise course on measure theory, which is followed by some initial applications to probability theory, including independence and conditional expectations. The second half of the book deals with Gaussian random variables, with Markov chains, with a few continuous parameter processes, including Brownian motion, and, finally, with martingales, both discrete and continuous parameter ones. The book is a self-contained introduction to probability theory and the measure theory required to study it.
Probability in Physics
Author: Yemima Ben-Menahem
Publisher: Springer Science & Business Media
ISBN: 3642213286
Category : Science
Languages : en
Pages : 325
Book Description
What is the role and meaning of probability in physical theory, in particular in two of the most successful theories of our age, quantum physics and statistical mechanics? Laws once conceived as universal and deterministic, such as Newton‘s laws of motion, or the second law of thermodynamics, are replaced in these theories by inherently probabilistic laws. This collection of essays by some of the world‘s foremost experts presents an in-depth analysis of the meaning of probability in contemporary physics. Among the questions addressed are: How are probabilities defined? Are they objective or subjective? What is their explanatory value? What are the differences between quantum and classical probabilities? The result is an informative and thought-provoking book for the scientifically inquisitive.
Publisher: Springer Science & Business Media
ISBN: 3642213286
Category : Science
Languages : en
Pages : 325
Book Description
What is the role and meaning of probability in physical theory, in particular in two of the most successful theories of our age, quantum physics and statistical mechanics? Laws once conceived as universal and deterministic, such as Newton‘s laws of motion, or the second law of thermodynamics, are replaced in these theories by inherently probabilistic laws. This collection of essays by some of the world‘s foremost experts presents an in-depth analysis of the meaning of probability in contemporary physics. Among the questions addressed are: How are probabilities defined? Are they objective or subjective? What is their explanatory value? What are the differences between quantum and classical probabilities? The result is an informative and thought-provoking book for the scientifically inquisitive.
Introduction to Probability
Author: David F. Anderson
Publisher: Cambridge University Press
ISBN: 110824498X
Category : Mathematics
Languages : en
Pages : 447
Book Description
This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.
Publisher: Cambridge University Press
ISBN: 110824498X
Category : Mathematics
Languages : en
Pages : 447
Book Description
This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.
Bernoulli's Fallacy
Author: Aubrey Clayton
Publisher: Columbia University Press
ISBN: 0231553358
Category : Mathematics
Languages : en
Pages : 641
Book Description
There is a logical flaw in the statistical methods used across experimental science. This fault is not a minor academic quibble: it underlies a reproducibility crisis now threatening entire disciplines. In an increasingly statistics-reliant society, this same deeply rooted error shapes decisions in medicine, law, and public policy with profound consequences. The foundation of the problem is a misunderstanding of probability and its role in making inferences from observations. Aubrey Clayton traces the history of how statistics went astray, beginning with the groundbreaking work of the seventeenth-century mathematician Jacob Bernoulli and winding through gambling, astronomy, and genetics. Clayton recounts the feuds among rival schools of statistics, exploring the surprisingly human problems that gave rise to the discipline and the all-too-human shortcomings that derailed it. He highlights how influential nineteenth- and twentieth-century figures developed a statistical methodology they claimed was purely objective in order to silence critics of their political agendas, including eugenics. Clayton provides a clear account of the mathematics and logic of probability, conveying complex concepts accessibly for readers interested in the statistical methods that frame our understanding of the world. He contends that we need to take a Bayesian approach—that is, to incorporate prior knowledge when reasoning with incomplete information—in order to resolve the crisis. Ranging across math, philosophy, and culture, Bernoulli’s Fallacy explains why something has gone wrong with how we use data—and how to fix it.
Publisher: Columbia University Press
ISBN: 0231553358
Category : Mathematics
Languages : en
Pages : 641
Book Description
There is a logical flaw in the statistical methods used across experimental science. This fault is not a minor academic quibble: it underlies a reproducibility crisis now threatening entire disciplines. In an increasingly statistics-reliant society, this same deeply rooted error shapes decisions in medicine, law, and public policy with profound consequences. The foundation of the problem is a misunderstanding of probability and its role in making inferences from observations. Aubrey Clayton traces the history of how statistics went astray, beginning with the groundbreaking work of the seventeenth-century mathematician Jacob Bernoulli and winding through gambling, astronomy, and genetics. Clayton recounts the feuds among rival schools of statistics, exploring the surprisingly human problems that gave rise to the discipline and the all-too-human shortcomings that derailed it. He highlights how influential nineteenth- and twentieth-century figures developed a statistical methodology they claimed was purely objective in order to silence critics of their political agendas, including eugenics. Clayton provides a clear account of the mathematics and logic of probability, conveying complex concepts accessibly for readers interested in the statistical methods that frame our understanding of the world. He contends that we need to take a Bayesian approach—that is, to incorporate prior knowledge when reasoning with incomplete information—in order to resolve the crisis. Ranging across math, philosophy, and culture, Bernoulli’s Fallacy explains why something has gone wrong with how we use data—and how to fix it.
Measure, Integral and Probability
Author: Marek Capinski
Publisher: Springer Science & Business Media
ISBN: 1447136314
Category : Mathematics
Languages : en
Pages : 229
Book Description
This very well written and accessible book emphasizes the reasons for studying measure theory, which is the foundation of much of probability. By focusing on measure, many illustrative examples and applications, including a thorough discussion of standard probability distributions and densities, are opened. The book also includes many problems and their fully worked solutions.
Publisher: Springer Science & Business Media
ISBN: 1447136314
Category : Mathematics
Languages : en
Pages : 229
Book Description
This very well written and accessible book emphasizes the reasons for studying measure theory, which is the foundation of much of probability. By focusing on measure, many illustrative examples and applications, including a thorough discussion of standard probability distributions and densities, are opened. The book also includes many problems and their fully worked solutions.
Probability with Martingales
Author: David Williams
Publisher: Cambridge University Press
ISBN: 9780521406055
Category : Mathematics
Languages : en
Pages : 274
Book Description
This is a masterly introduction to the modern, and rigorous, theory of probability. The author emphasises martingales and develops all the necessary measure theory.
Publisher: Cambridge University Press
ISBN: 9780521406055
Category : Mathematics
Languages : en
Pages : 274
Book Description
This is a masterly introduction to the modern, and rigorous, theory of probability. The author emphasises martingales and develops all the necessary measure theory.