Controlled Self-assembly of Gyroid-forming Block Copolymer Templates for Optical Metamaterials PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Controlled Self-assembly of Gyroid-forming Block Copolymer Templates for Optical Metamaterials PDF full book. Access full book title Controlled Self-assembly of Gyroid-forming Block Copolymer Templates for Optical Metamaterials by Karolina Godlewska. Download full books in PDF and EPUB format.

Controlled Self-assembly of Gyroid-forming Block Copolymer Templates for Optical Metamaterials

Controlled Self-assembly of Gyroid-forming Block Copolymer Templates for Optical Metamaterials PDF Author: Karolina Godlewska
Publisher:
ISBN:
Category :
Languages : en
Pages : 110

Book Description


Controlled Self-assembly of Gyroid-forming Block Copolymer Templates for Optical Metamaterials

Controlled Self-assembly of Gyroid-forming Block Copolymer Templates for Optical Metamaterials PDF Author: Karolina Godlewska
Publisher:
ISBN:
Category :
Languages : en
Pages : 110

Book Description


Gyroid Optical Metamaterials

Gyroid Optical Metamaterials PDF Author: James A. Dolan
Publisher: Springer
ISBN: 3030030113
Category : Science
Languages : en
Pages : 146

Book Description
This thesis explores the fabrication of gyroid-forming block copolymer templates and the optical properties of the resulting gyroid optical metamaterials, significantly contributing to our understanding of both. It demonstrates solvent vapour annealing to improve the long-range order of the templates, and investigates the unique crystallisation behaviour of their semicrystalline block. Furthermore, it shows that gyroid optical metamaterials that exhibit only short-range order are optically equivalent to nanoporous gold, and that the anomalous linear dichroism of gyroid optical metamaterials with long-range order is the result of the surface termination of the bulk gyroid morphology. Optical metamaterials are artificially engineered materials that, by virtue of their structure rather than their chemistry, may exhibit various optical properties not otherwise encountered in nature (e.g. a negative refractive index). However, these structures must be significantly smaller than the wavelength of visible light and are therefore challenging to fabricate using traditional “top down” techniques. Instead, a “bottom up” approach can be used, whereby optical metamaterials are fabricated via templates created by the self-assembly of block-copolymers. One such morphology is the gyroid, a chiral, continuous and triply periodic cubic network found in a range of natural and synthetic self-assembled systems.

Optical Metamaterials by Block Copolymer Self-Assembly

Optical Metamaterials by Block Copolymer Self-Assembly PDF Author: Stefano Salvatore
Publisher: Springer
ISBN: 3319053329
Category : Science
Languages : en
Pages : 89

Book Description
Metamaterials are artificially designed materials engineered to acquire their properties by their specific structure rather than their composition. They are considered a major scientific breakthrough and have attracted enormous attention over the past decade. The major challenge in obtaining an optical metamaterial active at visible frequencies is the fabrication of complex continuous metallic structures with nano metric features. This thesis presents the fabrication and characterization of optical metamaterials made by block copolymer self assembly. This approach allows fabrication of an intriguing and complex continuous 3D architecture called a gyroid, which is replicated into active plasmonic materials such as gold. The optical properties endowed by this particular gyroid geometry include reduction of plasma frequency, extraordinarily enhanced optical transmission, and a predicted negative refractive index. To date, this is the 3D optical metamaterial with the smallest features ever made.

Block Copolymer Self-assembly

Block Copolymer Self-assembly PDF Author: Gayashani Kanchana Ginige
Publisher:
ISBN:
Category : Block copolymers
Languages : en
Pages : 0

Book Description
Molecular self-assembly is the basis of structure in nature. While of far less complexity than a natural system, the same physical rules apply to simple synthetic designed systems that spontaneously form self-assembled structures and patterns. The self-assembly of block copolymers (BCPs) is an interesting example, as it can be harnessed to form both 2D (in thin films) and 3D (in bulk) porous and chemically controlled morphologies at scale. The self-assembly of BCPs on surfaces is of interest for a range of applications, but due to the enormous economic driver that is the computer industry, this direction has been pushed most strongly. Self-assembly of BCPs has been described in the International Technology Roadmap for Semiconductors (the ITRS, and now the IDRS) for almost two decades for lithography on semiconductors and for patterning the magnetic material of hard drives. As a result, there has been much academic interest, both fundamental and applied, to meet the challenges as outlined in the ITRS/IDRS due to the promise of this scalable and low-cost nanopatterning approach. More recently, the remarkable work harnessing BCP self-assembly has been directed to other applications, one being optical metamaterials; this thesis will add to this growing body of science. One aspect holding BCP self-assembly back is the defectivity in the patterned material or surface; some applications are more defect tolerant than others, but hard drive and other computer-industry applications have very low tolerance for defects. It is, therefore, important to have systematic control over the self-assembly process as well as quality of the final patterns generated by BCP self-assembly for these applications and others not yet imagined. This thesis examines the defectivity of the hexagonal nanoscale patterns derived from BCP self-assembly and looks at extending them to produce nanoscale patterns of native and non-native morphologies that have plasmonic properties. This thesis is divided into two parts. The first part deals with optimization of solvent vapor annealing of BCP self-assembly, the critical step in which the actual nanoscale phase segregation takes place; in this case, it uses a controlled solvent vapor flow annealing apparatus, design of experiment and machine learning approaches. In this work, it was discovered that slight variations in the initial film thickness on the order of even a couple of nanometers and the final swelling degree have a huge influence on the defectivity and the quality of the resulting patterns. Next, machine learning approaches are applied to compile qualitative and quantitative defect analysis into a single figure of merit that is mapped across an experimental parameter space. This approach enables faster convergence of results to arrive at the optimum annealing conditions for the annealing of thin films of BCPs of PS-b-PDMS that generate nanoscale hexagonal patterns of silica dots with a minimum number of defects. In the second part of the thesis, mixed metal/oxide double layer patterning was studied using sequential self-assembly of BCPs. The second part of the thesis starts with optimization of reactive ion etching (RIE) for producing single layer metal nanopatterns from metal ion-loaded thin films of PS-b-P2VP BCPs to generate single layers of hexagonal metal nanopatterns that can withstand a second consecutive reactive ion etching step. The goal of this work is to enable density doubled and/or Moiré pattern formation via self-assembly of a second layer of BCP on the initial pattern prepared by self assembly of either the same or different BCP, as will be described in Chapter 4. Therefore, the initial pattern produced via BCP self-assembly and RIE etching would need to withstand a second treatment step of BCP self-assembly and RIE. While single layer nanopatterns of Au and Pt nanoparticles can be produced without much trouble, these resulting patterns could not be applied for density multiplication of metal-metal nanopatterns since the metal dots become too small and disordered. To demonstrate that metal nanoparticles derived from BCPs could be used, at least, to produce a mixed metal oxide/metal patterns, arrays of SiOx dots were first produced from PS-b-PDMS BCPs and then layered a BCP of PS-b-P2VP that was subsequently loaded with gold or platinum ions. Upon RIE etching, the BCP is removed and the SiOx/Au or Pt nanoparticle arrays were produced. Based upon the outcomes of the optimization of the etching work, mixed Au-Pt commensurate and incommensurate hexagonal lattice patterns were produced on both silicon and quartz substrates. Finally, the optical properties of these mixed metal Pt-Au bilayer patterns were studied. They demonstrated interesting plasmonic properties of the bilayer patterns, including consistent observation of extended plasmon bands that suggest coupling of the localized surface plasmon resonances (LSPRs) of the gold nanoparticles through proximal platinum nanoparticles when arrayed in periodic patterns.

Block Copolymer Self-assembly and Templating Strategies

Block Copolymer Self-assembly and Templating Strategies PDF Author: Wubin Bai
Publisher:
ISBN:
Category :
Languages : en
Pages : 136

Book Description
Block copolymers microphase separate to form periodic patterns with period of a few nm and above without the need for lithographic guidance. These self-assembled nanostructures have a variety of bulk geometries (alternating lamellae, gyroids, cylinder or sphere arrays, tiling patterns, core-shell structures) depending on the molecular architecture of the polymer and the volume fraction of its blocks. And in thin films, surface interaction and commensurability effect influence the self-assembly and result in more diverse morphologies including hexagonal-packed perforated lamellae, square array of holes. The progress of self-assembly can be tracked in situ using Grazing Incidence Small Angle X-ray Scattering, and the annealed morphology can be revealed in 3D using TEM tomography. Moreover, non-bulk morphologies can be produced, the ordering of the microdomains can be improved and their locations directed using various templates and processing strategies. The blocks can themselves constitute a functional material, such as a photonic crystal, or they can be used as a mask to pattern other functional materials, functionalized directly by various chemical approaches, or used as a scaffold to assemble nanoparticles or other nanostructures. Block copolymers therefore offer tremendous flexibility in creating nanostructured materials with a range of applications in microelectronics, photovoltaics, filtration membranes and other devices.

Metamaterial Electromagnetic Wave Absorbers

Metamaterial Electromagnetic Wave Absorbers PDF Author: Willie J. Padilla
Publisher: Morgan & Claypool Publishers
ISBN: 1636392601
Category : Science
Languages : en
Pages : 199

Book Description
Electromagnetic metamaterials are a family of shaped periodic materials which achieve extraordinary scattering properties that are difficult or impossible to achieve with naturally occurring materials. This book focuses on one such feature of electromagnetic metamaterials—the theory, properties, and applications of the absorption of electromagnetic radiation. We have written this book for undergraduate and graduate students, researchers, and practitioners, covering the background and tools necessary to engage in the research and practice of metamaterial electromagnetic wave absorbers in various fundamental and applied settings. Given the growing impact of climate change, the call for innovations that can circumvent the use of conventional energy sources will be increasingly important. As we highlight in Chapter 6, the absorption of radiation with electromagnetic metamaterials has been used for energy harvesting and energy generation, and will help to reduce reliance on fossil fuels. Other applications ranging from biochemical sensing to imaging are also covered. We hope this book equips interested readers with the tools necessary to successfully engage in applied metamaterials research for clean, sustainable energy. This book consists of six chapters. Chapter 1 provides an introduction and a brief history of electromagnetic wave absorbers; Chapter 2 focuses on several theories of perfect absorbers; Chapter 3 discusses the scattering properties achievable with metamaterial absorbers; Chapter 4 provides significant detail on the fabricational processes; Chapter 5 discusses examples of dynamical absorbers; and Chapter 6 highlights applications of metamaterial absorbers.

Self-assembled Patterns of Block Copolymer/homopolymer Blends

Self-assembled Patterns of Block Copolymer/homopolymer Blends PDF Author: Dongsik Park
Publisher:
ISBN:
Category : Block copolymers
Languages : en
Pages : 225

Book Description
Many researchers have studied the orientation behavior of block copolymers (BCPs) with the most recent works directed towards nanotechnologies. Self-assembly of block copolymers is very relevant in controlling periodic nanostructures for nanotechnological applications. Nanotechnological applications of BCPs are possible due to their physical properties related to mass and energy transport, as well as mechanical, electrical, and optical properties. These properties provide substantial benefits in nanostructure membranes, nanotemplates, photonic crystals, and high-density information storage media. In many applications, such nanopatterns need to be achieved as ordered and tunable structures. Consequently, the control of orientation of such structures with defect-free ordering on larger length scales still remain as major research challenge in many cases. In addition to their pure block forms, blends of copolymers with other polymers offer productive research areas in relation to nanostructural self-assembly. We prepared well-aligned nanocylinders into block copolymer over the enhanced sample area and scale of height without any external field applications or modification of interaction between the sample and the substrate. Self-assembled 3-dimensional perpendicular cylinder orientation was achieved mainly by blending of minority homopolymer into the blockcopolymer. Thus, this study investigated a spontaneous and simple method for the orientation of perpendicular cylinders in BCP/homopolymer mixtures on a preferential substrate, by increasing the interaction force between the homologous polymer pair at a fixed composition of minority block component. Since the thermodynamical changes have been simply accomplished by the control of incompatibility between the block components, the intrinsic advantages of block copolymer nanopatterning, such as fast and spontaneous 3-dimensional nanopatterning with a high thermodynamic stability and reproducibility, have been completely preserved in this fabrication strategy. By exploiting thermodynamical changes using temperature variation and by blending a homopolymer with well controlled molecular weight, we illustrated that redistribution of homopolymer resulted in a shift of phase boundaries and in the stabilization of well-ordered structures to create new opportunities for nanotechnologies.

Miktoarm Star Polymers

Miktoarm Star Polymers PDF Author: Ashok Kakkar
Publisher: Royal Society of Chemistry
ISBN: 1788010426
Category : Technology & Engineering
Languages : en
Pages : 241

Book Description
The term ‘miktoarm polymers’ refers to asymmetric branched macromolecules, a relatively new entry to the macromolecular field. Recent advances in their synthesis and intriguing supramolecular chemistry in a desired medium has seen a fast expansion of their applications. The composition of miktoarm polymers can be tailored and even pre-defined to allow a desired combination of functions, meaning polymer chemists can have complete control of the overall architecture of these macromolecules. By carefully selecting the composition, they can create supramolecular structures with intriguing properties, particularly for applications in biology. Miktoarm Star Polymers features chapters from experts actively working in this field, and provides the reader with a unique introduction to the fundamental principles of this exciting macromolecular system. Topics covered include the design, synthesis, characterization, self-assembly and applications of miktoarm polymers. The book is an excellent overview and up to date guide to those working in research in polymer chemistry, materials science, and polymers for medical applications.

Block Copolymer Self-assembly Fundamentals and Applications in Formulation of Nano-structured Fluids

Block Copolymer Self-assembly Fundamentals and Applications in Formulation of Nano-structured Fluids PDF Author: Biswajit Sarkar
Publisher:
ISBN:
Category :
Languages : en
Pages : 213

Book Description
Dispersions of nanoparticles in polymer matrices form hybrid materials that can exhibit superior structural and functional properties and find applications in e. g. thermo-plastics, electronics, polymer electrolytes, catalysis, paint formulations, and drug delivery. Control over the particle location and orientation in the polymeric matrices are essential in order to realize the enhanced mechanical, electrical, and optical properties of the nanohybrids. Block copolymers, composed of two or more different monomers, are promising for controlling particle location and orientation because of their ability to organize into ordered nanostructures. Fundamental questions pertaining to nanoparticle-polymer interfacial interactions remain open and formulate the objectives of our investigation. Particle-polymer enthalpic and entropic interactions control the nanoparticle dispersion in polymer matrices. Synthetic chemical methods for modifying the particle surface in order to control polymer-particle interactions are involved and large scale production is not possible. In the current approach, a physical method is employed to control polymer-particle interactions. The use of commercially available solvents is found to be effective in modifying particle-polymer interfacial interactions. The approach is applicable to a wide range of particle-polymer systems and can thereby enable large scale processing of polymer nanohybrids. The systems of silica nanoparticles dispersed in long-range or short-range self-assembled structures of aqueous poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers (Pluronics) is considered here. The effect of various parameters such as the presence of organic solvents, pH, and particle size on the block copolymer organization and the ensuing particle-polymer interactions are investigated. Favorable surface interactions between the deprotonated silica nanoparticle and PEO-rich domain facilitate particle incorporation in the cylindrical lyotropic mesophase formed by hydrated PEO-PPO-PEO block copolymer. The amount of nanoparticle dispersed is limited to 10 wt% due to restrictions posed by a combination of thermodynamics and geometry. Incorporation of deprotonated nanoparticles by replacing equal mass of water did not affect the lattice parameter of the hexagonal lyotropic liquid crystalline structures formed by hydrated PEO-PPO-PEO block copolymer. The incorporation of protonated NPs resulted in an increase in the lattice parameter due to stronger nanoparticle-polymer enthalpic interactions. Two dimensional swelling exponent (d ~ Φpolymer-0. 65) suggests that deprotonated nanoparticles are located inside the PEO-rich domains, away from PEO-PPO interfaces. The presence of organic solvents screen the effect of protonated NPs on the lattice parameter of the hexagonal lyotropic liquid crystalline structures formed by hydrated PEO-PPO-PEO block copolymer.

Polarized Light in Animal Vision

Polarized Light in Animal Vision PDF Author: Gábor Horváth
Publisher: Springer Science & Business Media
ISBN: 3662093871
Category : Science
Languages : en
Pages : 465

Book Description
The subject of this volume is two-fold. First, it gathers typical polarization patterns occurring in nature. Second, it surveys the polarization-sensitive ani mals, the physiological mechanisms and biological functions of polarization sensitivity as weIl as the polarization-guided behaviour in animals. The monograph is prepared for biologists, physicists and meteorologists, espe cially for experts of atmospheric optics and animal vision, who wish to under stand and reveal the message hidden in polarization patterns of the optical environment not directly accessible to the human visual system, but measur able by polarimetry and perceived by many animals. Our volume is an attempt to build a bridge between these two physical and biological flelds. In Part I we introduce the reader to the elements of imaging polarimetry. This technique can be efflciently used, e. g. in atmospheric optics, remote sens ing and biology. In Part 11 we deal with typical polarization patterns of the natural optical environment. Sunrise/sunset, clear skies, cloudy skies, moonshine and total solar eclipses all mean quite different illumination conditions, wh ich also affect the spatial distribution and strength of celestial polarization. We pre sent the polarization patterns of the sky and its unpolarized (neutral) points under sunlit, moonlit, clear, cloudy and eclipsed conditions as a function of solar elevation. The polarization pattern of a rainbow is also shown. That part of the spectrum is derived in which perception of skylight polarization is optimal under partly cloudy skies.