Author: Gregory Chudnovsky
Publisher: American Mathematical Soc.
ISBN: 0821815008
Category : Mathematics
Languages : en
Pages : 464
Book Description
Contains a collection of papers devoted primarily to transcendental number theory and diophantine approximations. This title includes a text of the author's invited address on his work on the theory of transcendental numbers to the 1978 International Congress of Mathematicians in Helsinki.
Contributions to the Theory of Transcendental Numbers
Author: Gregory Chudnovsky
Publisher: American Mathematical Soc.
ISBN: 0821815008
Category : Mathematics
Languages : en
Pages : 464
Book Description
Contains a collection of papers devoted primarily to transcendental number theory and diophantine approximations. This title includes a text of the author's invited address on his work on the theory of transcendental numbers to the 1978 International Congress of Mathematicians in Helsinki.
Publisher: American Mathematical Soc.
ISBN: 0821815008
Category : Mathematics
Languages : en
Pages : 464
Book Description
Contains a collection of papers devoted primarily to transcendental number theory and diophantine approximations. This title includes a text of the author's invited address on his work on the theory of transcendental numbers to the 1978 International Congress of Mathematicians in Helsinki.
Pillars of Transcendental Number Theory
Author: Saradha Natarajan
Publisher: Springer Nature
ISBN: 9811541558
Category : Mathematics
Languages : en
Pages : 184
Book Description
This book deals with the development of Diophantine problems starting with Thue's path breaking result and culminating in Roth's theorem with applications. It discusses classical results including Hermite–Lindemann–Weierstrass theorem, Gelfond–Schneider theorem, Schmidt’s subspace theorem and more. It also includes two theorems of Ramachandra which are not widely known and other interesting results derived on the values of Weierstrass elliptic function. Given the constantly growing number of applications of linear forms in logarithms, it is becoming increasingly important for any student wanting to work in this area to know the proofs of Baker’s original results. This book presents Baker’s original results in a format suitable for graduate students, with a focus on presenting the content in an accessible and simple manner. Each student-friendly chapter concludes with selected problems in the form of “Exercises” and interesting information presented as “Notes,” intended to spark readers’ curiosity.
Publisher: Springer Nature
ISBN: 9811541558
Category : Mathematics
Languages : en
Pages : 184
Book Description
This book deals with the development of Diophantine problems starting with Thue's path breaking result and culminating in Roth's theorem with applications. It discusses classical results including Hermite–Lindemann–Weierstrass theorem, Gelfond–Schneider theorem, Schmidt’s subspace theorem and more. It also includes two theorems of Ramachandra which are not widely known and other interesting results derived on the values of Weierstrass elliptic function. Given the constantly growing number of applications of linear forms in logarithms, it is becoming increasingly important for any student wanting to work in this area to know the proofs of Baker’s original results. This book presents Baker’s original results in a format suitable for graduate students, with a focus on presenting the content in an accessible and simple manner. Each student-friendly chapter concludes with selected problems in the form of “Exercises” and interesting information presented as “Notes,” intended to spark readers’ curiosity.
Transcendental Number Theory
Author: Alan Baker
Publisher: Cambridge University Press
ISBN: 1009229966
Category : Mathematics
Languages : en
Pages :
Book Description
First published in 1975, this classic book gives a systematic account of transcendental number theory, that is, the theory of those numbers that cannot be expressed as the roots of algebraic equations having rational coefficients. Their study has developed into a fertile and extensive theory, which continues to see rapid progress today. Expositions are presented of theories relating to linear forms in the logarithms of algebraic numbers, of Schmidt's generalization of the Thue–Siegel–Roth theorem, of Shidlovsky's work on Siegel's E-functions and of Sprindžuk's solution to the Mahler conjecture. This edition includes an introduction written by David Masser describing Baker's achievement, surveying the content of each chapter and explaining the main argument of Baker's method in broad strokes. A new afterword lists recent developments related to Baker's work.
Publisher: Cambridge University Press
ISBN: 1009229966
Category : Mathematics
Languages : en
Pages :
Book Description
First published in 1975, this classic book gives a systematic account of transcendental number theory, that is, the theory of those numbers that cannot be expressed as the roots of algebraic equations having rational coefficients. Their study has developed into a fertile and extensive theory, which continues to see rapid progress today. Expositions are presented of theories relating to linear forms in the logarithms of algebraic numbers, of Schmidt's generalization of the Thue–Siegel–Roth theorem, of Shidlovsky's work on Siegel's E-functions and of Sprindžuk's solution to the Mahler conjecture. This edition includes an introduction written by David Masser describing Baker's achievement, surveying the content of each chapter and explaining the main argument of Baker's method in broad strokes. A new afterword lists recent developments related to Baker's work.
Contributions to the Founding of the Theory of Transfinite Numbers
Author: Georg Cantor
Publisher:
ISBN:
Category : Arithmetic
Languages : en
Pages : 236
Book Description
Publisher:
ISBN:
Category : Arithmetic
Languages : en
Pages : 236
Book Description
Lectures on the Theory of Algebraic Numbers
Author: E. T. Hecke
Publisher: Springer Science & Business Media
ISBN: 1475740921
Category : Mathematics
Languages : en
Pages : 251
Book Description
. . . if one wants to make progress in mathematics one should study the masters not the pupils. N. H. Abel Heeke was certainly one of the masters, and in fact, the study of Heeke L series and Heeke operators has permanently embedded his name in the fabric of number theory. It is a rare occurrence when a master writes a basic book, and Heeke's Lectures on the Theory of Algebraic Numbers has become a classic. To quote another master, Andre Weil: "To improve upon Heeke, in a treatment along classical lines of the theory of algebraic numbers, would be a futile and impossible task. " We have tried to remain as close as possible to the original text in pre serving Heeke's rich, informal style of exposition. In a very few instances we have substituted modern terminology for Heeke's, e. g. , "torsion free group" for "pure group. " One problem for a student is the lack of exercises in the book. However, given the large number of texts available in algebraic number theory, this is not a serious drawback. In particular we recommend Number Fields by D. A. Marcus (Springer-Verlag) as a particularly rich source. We would like to thank James M. Vaughn Jr. and the Vaughn Foundation Fund for their encouragement and generous support of Jay R. Goldman without which this translation would never have appeared. Minneapolis George U. Brauer July 1981 Jay R.
Publisher: Springer Science & Business Media
ISBN: 1475740921
Category : Mathematics
Languages : en
Pages : 251
Book Description
. . . if one wants to make progress in mathematics one should study the masters not the pupils. N. H. Abel Heeke was certainly one of the masters, and in fact, the study of Heeke L series and Heeke operators has permanently embedded his name in the fabric of number theory. It is a rare occurrence when a master writes a basic book, and Heeke's Lectures on the Theory of Algebraic Numbers has become a classic. To quote another master, Andre Weil: "To improve upon Heeke, in a treatment along classical lines of the theory of algebraic numbers, would be a futile and impossible task. " We have tried to remain as close as possible to the original text in pre serving Heeke's rich, informal style of exposition. In a very few instances we have substituted modern terminology for Heeke's, e. g. , "torsion free group" for "pure group. " One problem for a student is the lack of exercises in the book. However, given the large number of texts available in algebraic number theory, this is not a serious drawback. In particular we recommend Number Fields by D. A. Marcus (Springer-Verlag) as a particularly rich source. We would like to thank James M. Vaughn Jr. and the Vaughn Foundation Fund for their encouragement and generous support of Jay R. Goldman without which this translation would never have appeared. Minneapolis George U. Brauer July 1981 Jay R.
Transcendental Numbers. (AM-16)
Author: Carl Ludwig Siegel
Publisher: Princeton University Press
ISBN: 1400882354
Category : Mathematics
Languages : en
Pages : 102
Book Description
The description for this book, Transcendental Numbers. (AM-16), will be forthcoming.
Publisher: Princeton University Press
ISBN: 1400882354
Category : Mathematics
Languages : en
Pages : 102
Book Description
The description for this book, Transcendental Numbers. (AM-16), will be forthcoming.
Transcendental Numbers
Author: Andrei B. Shidlovskii
Publisher: Walter de Gruyter
ISBN: 3110889056
Category : Mathematics
Languages : en
Pages : 489
Book Description
The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 30 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob.
Publisher: Walter de Gruyter
ISBN: 3110889056
Category : Mathematics
Languages : en
Pages : 489
Book Description
The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 30 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob.
Transcendental Numbers
Author: M. Ram Murty
Publisher: Springer
ISBN: 1493908324
Category : Mathematics
Languages : en
Pages : 219
Book Description
This book provides an introduction to the topic of transcendental numbers for upper-level undergraduate and graduate students. The text is constructed to support a full course on the subject, including descriptions of both relevant theorems and their applications. While the first part of the book focuses on introducing key concepts, the second part presents more complex material, including applications of Baker’s theorem, Schanuel’s conjecture, and Schneider’s theorem. These later chapters may be of interest to researchers interested in examining the relationship between transcendence and L-functions. Readers of this text should possess basic knowledge of complex analysis and elementary algebraic number theory.
Publisher: Springer
ISBN: 1493908324
Category : Mathematics
Languages : en
Pages : 219
Book Description
This book provides an introduction to the topic of transcendental numbers for upper-level undergraduate and graduate students. The text is constructed to support a full course on the subject, including descriptions of both relevant theorems and their applications. While the first part of the book focuses on introducing key concepts, the second part presents more complex material, including applications of Baker’s theorem, Schanuel’s conjecture, and Schneider’s theorem. These later chapters may be of interest to researchers interested in examining the relationship between transcendence and L-functions. Readers of this text should possess basic knowledge of complex analysis and elementary algebraic number theory.
Transcendental and Algebraic Numbers
Author: A. O. Gelfond
Publisher: Courier Dover Publications
ISBN: 0486802256
Category : Mathematics
Languages : en
Pages : 212
Book Description
Primarily an advanced study of the modern theory of transcendental and algebraic numbers, this treatment by a distinguished Soviet mathematician focuses on the theory's fundamental methods. The text also chronicles the historical development of the theory's methods and explores the connections with other problems in number theory. The problem of approximating algebraic numbers is also studied as a case in the theory of transcendental numbers. Topics include the Thue-Siegel theorem, the Hermite-Lindemann theorem on the transcendency of the exponential function, and the work of C. Siegel on the transcendency of the Bessel functions and of the solutions of other differential equations. The final chapter considers the Gelfond-Schneider theorem on the transcendency of alpha to the power beta. Each proof is prefaced by a brief discussion of its scheme, which provides a helpful guide to understanding the proof's progression.
Publisher: Courier Dover Publications
ISBN: 0486802256
Category : Mathematics
Languages : en
Pages : 212
Book Description
Primarily an advanced study of the modern theory of transcendental and algebraic numbers, this treatment by a distinguished Soviet mathematician focuses on the theory's fundamental methods. The text also chronicles the historical development of the theory's methods and explores the connections with other problems in number theory. The problem of approximating algebraic numbers is also studied as a case in the theory of transcendental numbers. Topics include the Thue-Siegel theorem, the Hermite-Lindemann theorem on the transcendency of the exponential function, and the work of C. Siegel on the transcendency of the Bessel functions and of the solutions of other differential equations. The final chapter considers the Gelfond-Schneider theorem on the transcendency of alpha to the power beta. Each proof is prefaced by a brief discussion of its scheme, which provides a helpful guide to understanding the proof's progression.
数论导引
Author:
Publisher:
ISBN: 9787115156112
Category : Number theory
Languages : zh-CN
Pages : 435
Book Description
本书内容包括素数、无理数、同余、费马定理、连分数、不定方程、二次域、算术函数、分化等。
Publisher:
ISBN: 9787115156112
Category : Number theory
Languages : zh-CN
Pages : 435
Book Description
本书内容包括素数、无理数、同余、费马定理、连分数、不定方程、二次域、算术函数、分化等。