Author: W.-H. Steeb
Publisher: World Scientific
ISBN: 9789810228910
Category : Science
Languages : en
Pages : 380
Book Description
This book is a comprehensive introduction to the application of continuous symmetries and their Lie algebras to ordinary and partial differential equations. It is suitable for students and research workers whose main interest lies in finding solutions to differential equations. It therefore caters for readers primarily interested in applied mathematics and physics rather than pure mathematics.The book provides an application-orientated text that is reasonably self-contained. A large number of worked examples have been included to help readers working independently of a teacher. The advance of algebraic computation has made it possible to write programs for the tedious calculations in this research field, and thus the book also makes a survey of computer algebra packages.
Continuous Symmetries, Lie Algebras, Differential Equations, and Computer Algebra
Author: W.-H. Steeb
Publisher: World Scientific
ISBN: 9789810228910
Category : Science
Languages : en
Pages : 380
Book Description
This book is a comprehensive introduction to the application of continuous symmetries and their Lie algebras to ordinary and partial differential equations. It is suitable for students and research workers whose main interest lies in finding solutions to differential equations. It therefore caters for readers primarily interested in applied mathematics and physics rather than pure mathematics.The book provides an application-orientated text that is reasonably self-contained. A large number of worked examples have been included to help readers working independently of a teacher. The advance of algebraic computation has made it possible to write programs for the tedious calculations in this research field, and thus the book also makes a survey of computer algebra packages.
Publisher: World Scientific
ISBN: 9789810228910
Category : Science
Languages : en
Pages : 380
Book Description
This book is a comprehensive introduction to the application of continuous symmetries and their Lie algebras to ordinary and partial differential equations. It is suitable for students and research workers whose main interest lies in finding solutions to differential equations. It therefore caters for readers primarily interested in applied mathematics and physics rather than pure mathematics.The book provides an application-orientated text that is reasonably self-contained. A large number of worked examples have been included to help readers working independently of a teacher. The advance of algebraic computation has made it possible to write programs for the tedious calculations in this research field, and thus the book also makes a survey of computer algebra packages.
Continuous Symmetries, Lie Algebras, Differential Equations And Computer Algebra (2nd Edition)
Author: Willi-hans Steeb
Publisher: World Scientific Publishing Company
ISBN: 9813107014
Category : Science
Languages : en
Pages : 472
Book Description
This textbook comprehensively introduces students and researchers to the application of continuous symmetries and their Lie algebras to ordinary and partial differential equations. Covering all the modern techniques in detail, it relates applications to cutting-edge research fields such as Yang-Mills theory and string theory.Aimed at readers in applied mathematics and physics rather than pure mathematics, the material is ideally suited to students and researchers whose main interest lies in finding solutions to differential equations and invariants of maps.A large number of worked examples and challenging exercises help readers to work independently of teachers, and by including SymbolicC++ implementations of the techniques in each chapter, the book takes full advantage of the advancements in algebraic computation.Twelve new sections have been added in this edition, including: Haar measure, Sato's theory and sigma functions, universal algebra, anti-self dual Yang-Mills equation, and discrete Painlevé equations.
Publisher: World Scientific Publishing Company
ISBN: 9813107014
Category : Science
Languages : en
Pages : 472
Book Description
This textbook comprehensively introduces students and researchers to the application of continuous symmetries and their Lie algebras to ordinary and partial differential equations. Covering all the modern techniques in detail, it relates applications to cutting-edge research fields such as Yang-Mills theory and string theory.Aimed at readers in applied mathematics and physics rather than pure mathematics, the material is ideally suited to students and researchers whose main interest lies in finding solutions to differential equations and invariants of maps.A large number of worked examples and challenging exercises help readers to work independently of teachers, and by including SymbolicC++ implementations of the techniques in each chapter, the book takes full advantage of the advancements in algebraic computation.Twelve new sections have been added in this edition, including: Haar measure, Sato's theory and sigma functions, universal algebra, anti-self dual Yang-Mills equation, and discrete Painlevé equations.
Continuous Symmetries, Lie Algebras, Differential Equations, and Computer Algebra
Author: W.-H. Steeb
Publisher:
ISBN: 9789812839787
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9789812839787
Category :
Languages : en
Pages :
Book Description
Continuous Symmetries, Lie Algebras, Differential Equations And Computer Algebra (2nd Edition).
Author: Willi-hans Steeb
Publisher:
ISBN: 9789812770127
Category :
Languages : en
Pages : 472
Book Description
Publisher:
ISBN: 9789812770127
Category :
Languages : en
Pages : 472
Book Description
Continuous Symmetries and Integrability of Discrete Equations
Author: Decio Levi
Publisher: American Mathematical Society, Centre de Recherches Mathématiques
ISBN: 0821843540
Category : Mathematics
Languages : en
Pages : 520
Book Description
This book on integrable systems and symmetries presents new results on applications of symmetries and integrability techniques to the case of equations defined on the lattice. This relatively new field has many applications, for example, in describing the evolution of crystals and molecular systems defined on lattices, and in finding numerical approximations for differential equations preserving their symmetries. The book contains three chapters and five appendices. The first chapter is an introduction to the general ideas about symmetries, lattices, differential difference and partial difference equations and Lie point symmetries defined on them. Chapter 2 deals with integrable and linearizable systems in two dimensions. The authors start from the prototype of integrable and linearizable partial differential equations, the Korteweg de Vries and the Burgers equations. Then they consider the best known integrable differential difference and partial difference equations. Chapter 3 considers generalized symmetries and conserved densities as integrability criteria. The appendices provide details which may help the readers' understanding of the subjects presented in Chapters 2 and 3. This book is written for PhD students and early researchers, both in theoretical physics and in applied mathematics, who are interested in the study of symmetries and integrability of difference equations.
Publisher: American Mathematical Society, Centre de Recherches Mathématiques
ISBN: 0821843540
Category : Mathematics
Languages : en
Pages : 520
Book Description
This book on integrable systems and symmetries presents new results on applications of symmetries and integrability techniques to the case of equations defined on the lattice. This relatively new field has many applications, for example, in describing the evolution of crystals and molecular systems defined on lattices, and in finding numerical approximations for differential equations preserving their symmetries. The book contains three chapters and five appendices. The first chapter is an introduction to the general ideas about symmetries, lattices, differential difference and partial difference equations and Lie point symmetries defined on them. Chapter 2 deals with integrable and linearizable systems in two dimensions. The authors start from the prototype of integrable and linearizable partial differential equations, the Korteweg de Vries and the Burgers equations. Then they consider the best known integrable differential difference and partial difference equations. Chapter 3 considers generalized symmetries and conserved densities as integrability criteria. The appendices provide details which may help the readers' understanding of the subjects presented in Chapters 2 and 3. This book is written for PhD students and early researchers, both in theoretical physics and in applied mathematics, who are interested in the study of symmetries and integrability of difference equations.
Symmetry Methods for Differential Equations
Author: Peter Ellsworth Hydon
Publisher: Cambridge University Press
ISBN: 9780521497862
Category : Mathematics
Languages : en
Pages : 230
Book Description
This book is a straightforward introduction to the subject of symmetry methods for solving differential equations, and is aimed at applied mathematicians, physicists, and engineers. The presentation is informal, using many worked examples to illustrate the main symmetry methods. It is written at a level suitable for postgraduates and advanced undergraduates, and is designed to enable the reader to master the main techniques quickly and easily.The book contains some methods that have not previously appeared in a text. These include methods for obtaining discrete symmetries and integrating factors.
Publisher: Cambridge University Press
ISBN: 9780521497862
Category : Mathematics
Languages : en
Pages : 230
Book Description
This book is a straightforward introduction to the subject of symmetry methods for solving differential equations, and is aimed at applied mathematicians, physicists, and engineers. The presentation is informal, using many worked examples to illustrate the main symmetry methods. It is written at a level suitable for postgraduates and advanced undergraduates, and is designed to enable the reader to master the main techniques quickly and easily.The book contains some methods that have not previously appeared in a text. These include methods for obtaining discrete symmetries and integrating factors.
Mechanisms
Author: Jaime Gallardo-Alvarado
Publisher: Academic Press
ISBN: 0323953476
Category : Technology & Engineering
Languages : en
Pages : 532
Book Description
Theory of mechanisms is an applied science of mechanics that studies the relationship between geometry, mobility, topology, and relative motion between rigid bodies connected by geometric forms. Recently, knowledge in kinematics and mechanisms has considerably increased, causing a renovation in the methods of kinematic analysis. With the progress of the algebras of kinematics and the mathematical methods used in the optimal solution of polynomial equations, it has become possible to formulate and elegantly solve problems. Mechanisms: Kinematic Analysis and Applications in Robotics provides an updated approach to kinematic analysis methods and a review of the mobility criteria most used in planar and spatial mechanisms. Applications in the kinematic analysis of robot manipulators complement the material presented in the book, growing in importance when one recognizes that kinematics is a basic area in the control and modeling of robot manipulators. - Presents an organized review of general mathematical methods and classical concepts of the theory of mechanisms - Introduces methods approaching time derivatives of arbitrary vectors employing general approaches based on the vector angular velocity concept introduced by Kane and Levinson - Proposes a strategic approach not only in acceleration analysis but also to jerk analysis in an easy to understand and systematic way - Explains kinematic analysis of serial and parallel manipulators by means of the theory of screws
Publisher: Academic Press
ISBN: 0323953476
Category : Technology & Engineering
Languages : en
Pages : 532
Book Description
Theory of mechanisms is an applied science of mechanics that studies the relationship between geometry, mobility, topology, and relative motion between rigid bodies connected by geometric forms. Recently, knowledge in kinematics and mechanisms has considerably increased, causing a renovation in the methods of kinematic analysis. With the progress of the algebras of kinematics and the mathematical methods used in the optimal solution of polynomial equations, it has become possible to formulate and elegantly solve problems. Mechanisms: Kinematic Analysis and Applications in Robotics provides an updated approach to kinematic analysis methods and a review of the mobility criteria most used in planar and spatial mechanisms. Applications in the kinematic analysis of robot manipulators complement the material presented in the book, growing in importance when one recognizes that kinematics is a basic area in the control and modeling of robot manipulators. - Presents an organized review of general mathematical methods and classical concepts of the theory of mechanisms - Introduces methods approaching time derivatives of arbitrary vectors employing general approaches based on the vector angular velocity concept introduced by Kane and Levinson - Proposes a strategic approach not only in acceleration analysis but also to jerk analysis in an easy to understand and systematic way - Explains kinematic analysis of serial and parallel manipulators by means of the theory of screws
CRC Handbook of Lie Group Analysis of Differential Equations, Volume III
Author: Nail H. Ibragimov
Publisher: CRC Press
ISBN: 1040294103
Category : Mathematics
Languages : en
Pages : 554
Book Description
Today Lie group theoretical approach to differential equations has been extended to new situations and has become applicable to the majority of equations that frequently occur in applied sciences. Newly developed theoretical and computational methods are awaiting application. Students and applied scientists are expected to understand these methods. Volume 3 and the accompanying software allow readers to extend their knowledge of computational algebra. Written by the world's leading experts in the field, this up-to-date sourcebook covers topics such as Lie-Bäcklund, conditional and non-classical symmetries, approximate symmetry groups for equations with a small parameter, group analysis of differential equations with distributions, integro-differential equations, recursions, and symbolic software packages. The text provides an ideal introduction to modern group analysis and addresses issues to both beginners and experienced researchers in the application of Lie group methods.
Publisher: CRC Press
ISBN: 1040294103
Category : Mathematics
Languages : en
Pages : 554
Book Description
Today Lie group theoretical approach to differential equations has been extended to new situations and has become applicable to the majority of equations that frequently occur in applied sciences. Newly developed theoretical and computational methods are awaiting application. Students and applied scientists are expected to understand these methods. Volume 3 and the accompanying software allow readers to extend their knowledge of computational algebra. Written by the world's leading experts in the field, this up-to-date sourcebook covers topics such as Lie-Bäcklund, conditional and non-classical symmetries, approximate symmetry groups for equations with a small parameter, group analysis of differential equations with distributions, integro-differential equations, recursions, and symbolic software packages. The text provides an ideal introduction to modern group analysis and addresses issues to both beginners and experienced researchers in the application of Lie group methods.
Computer Algebra With Symbolicc++
Author: Yorick Hardy
Publisher: World Scientific Publishing Company
ISBN: 9813101253
Category : Mathematics
Languages : en
Pages : 600
Book Description
This book gives a comprehensive introduction to computer algebra together with advanced topics in this field. It provides a detailed coverage of the mathematics of computer algebra as well as a step-by-step guide to implement a computer algebra system in the object-oriented language C++. The used tools from C++ are introduced in detail.Numerous examples from mathematics, physics and engineering are presented to illustrate the system's capabilities. Computer algebra implementations in LISP and Haskell are also included. In addition, gene expression programming and multiexpression programming with applications to computer algebra are introduced.
Publisher: World Scientific Publishing Company
ISBN: 9813101253
Category : Mathematics
Languages : en
Pages : 600
Book Description
This book gives a comprehensive introduction to computer algebra together with advanced topics in this field. It provides a detailed coverage of the mathematics of computer algebra as well as a step-by-step guide to implement a computer algebra system in the object-oriented language C++. The used tools from C++ are introduced in detail.Numerous examples from mathematics, physics and engineering are presented to illustrate the system's capabilities. Computer algebra implementations in LISP and Haskell are also included. In addition, gene expression programming and multiexpression programming with applications to computer algebra are introduced.
Nonlinear Workbook, The: Chaos, Fractals, Cellular Automata, Genetic Algorithms, Gene Expression Programming, Support Vector Machine, Wavelets, Hidden Markov Models, Fuzzy Logic With C++, Java And Symbolicc++ Programs (6th Edition)
Author: Willi-hans Steeb
Publisher: World Scientific Publishing Company
ISBN: 9814583499
Category : Science
Languages : en
Pages : 683
Book Description
The Nonlinear Workbook provides a comprehensive treatment of all the techniques in nonlinear dynamics together with C++, Java and SymbolicC++ implementations. The book not only covers the theoretical aspects of the topics but also provides the practical tools. To understand the material, more than 100 worked out examples and 160 ready to run programs are included. Each chapter provides a collection of interesting problems. New topics added to the 6th edition are Swarm Intelligence, Quantum Cellular Automata, Hidden Markov Model and DNA, Birkhoff's ergodic theorem and chaotic maps, Banach fixed point theorem and applications, tau-wavelets of Haar, Boolean derivatives and applications, and Cartan forms and Lagrangian.
Publisher: World Scientific Publishing Company
ISBN: 9814583499
Category : Science
Languages : en
Pages : 683
Book Description
The Nonlinear Workbook provides a comprehensive treatment of all the techniques in nonlinear dynamics together with C++, Java and SymbolicC++ implementations. The book not only covers the theoretical aspects of the topics but also provides the practical tools. To understand the material, more than 100 worked out examples and 160 ready to run programs are included. Each chapter provides a collection of interesting problems. New topics added to the 6th edition are Swarm Intelligence, Quantum Cellular Automata, Hidden Markov Model and DNA, Birkhoff's ergodic theorem and chaotic maps, Banach fixed point theorem and applications, tau-wavelets of Haar, Boolean derivatives and applications, and Cartan forms and Lagrangian.