Author: Rajan Chattamvelli
Publisher: Springer Nature
ISBN: 3031024303
Category : Mathematics
Languages : en
Pages : 151
Book Description
This is an introductory book on continuous statistical distributions and its applications. It is primarily written for graduate students in engineering, undergraduate students in statistics, econometrics, and researchers in various fields. The purpose is to give a self-contained introduction to most commonly used classical continuous distributions in two parts. Important applications of each distribution in various applied fields are explored at the end of each chapter. A brief overview of the chapters is as follows. Chapter 1 discusses important concepts on continuous distributions like location-and-scale distributions, truncated, size-biased, and transmuted distributions. A theorem on finding the mean deviation of continuous distributions, and its applications are also discussed. Chapter 2 is on continuous uniform distribution, which is used in generating random numbers from other distributions. Exponential distribution is discussed in Chapter 3, and its applications briefly mentioned. Chapter 4 discusses both Beta-I and Beta-II distributions and their generalizations, as well as applications in geotechnical engineering, PERT, control charts, etc. The arcsine distribution and its variants are discussed in Chapter 5, along with arcsine transforms and Brownian motion. This is followed by gamma distribution and its applications in civil engineering, metallurgy, and reliability. Chapter 7 is on cosine distribution and its applications in signal processing, antenna design, and robotics path planning. Chapter 8 discusses the normal distribution and its variants like lognormal, and skew-normal distributions. The last chapter of Part I is on Cauchy distribution, its variants and applications in thermodynamics, interferometer design, and carbon-nanotube strain sensing. A new volume (Part II) covers inverse Gaussian, Laplace, Pareto, 2, T, F, Weibull, Rayleigh, Maxwell, and Gumbel distributions.
Continuous Distributions in Engineering and the Applied Sciences -- Part I
Author: Rajan Chattamvelli
Publisher: Springer Nature
ISBN: 3031024303
Category : Mathematics
Languages : en
Pages : 151
Book Description
This is an introductory book on continuous statistical distributions and its applications. It is primarily written for graduate students in engineering, undergraduate students in statistics, econometrics, and researchers in various fields. The purpose is to give a self-contained introduction to most commonly used classical continuous distributions in two parts. Important applications of each distribution in various applied fields are explored at the end of each chapter. A brief overview of the chapters is as follows. Chapter 1 discusses important concepts on continuous distributions like location-and-scale distributions, truncated, size-biased, and transmuted distributions. A theorem on finding the mean deviation of continuous distributions, and its applications are also discussed. Chapter 2 is on continuous uniform distribution, which is used in generating random numbers from other distributions. Exponential distribution is discussed in Chapter 3, and its applications briefly mentioned. Chapter 4 discusses both Beta-I and Beta-II distributions and their generalizations, as well as applications in geotechnical engineering, PERT, control charts, etc. The arcsine distribution and its variants are discussed in Chapter 5, along with arcsine transforms and Brownian motion. This is followed by gamma distribution and its applications in civil engineering, metallurgy, and reliability. Chapter 7 is on cosine distribution and its applications in signal processing, antenna design, and robotics path planning. Chapter 8 discusses the normal distribution and its variants like lognormal, and skew-normal distributions. The last chapter of Part I is on Cauchy distribution, its variants and applications in thermodynamics, interferometer design, and carbon-nanotube strain sensing. A new volume (Part II) covers inverse Gaussian, Laplace, Pareto, 2, T, F, Weibull, Rayleigh, Maxwell, and Gumbel distributions.
Publisher: Springer Nature
ISBN: 3031024303
Category : Mathematics
Languages : en
Pages : 151
Book Description
This is an introductory book on continuous statistical distributions and its applications. It is primarily written for graduate students in engineering, undergraduate students in statistics, econometrics, and researchers in various fields. The purpose is to give a self-contained introduction to most commonly used classical continuous distributions in two parts. Important applications of each distribution in various applied fields are explored at the end of each chapter. A brief overview of the chapters is as follows. Chapter 1 discusses important concepts on continuous distributions like location-and-scale distributions, truncated, size-biased, and transmuted distributions. A theorem on finding the mean deviation of continuous distributions, and its applications are also discussed. Chapter 2 is on continuous uniform distribution, which is used in generating random numbers from other distributions. Exponential distribution is discussed in Chapter 3, and its applications briefly mentioned. Chapter 4 discusses both Beta-I and Beta-II distributions and their generalizations, as well as applications in geotechnical engineering, PERT, control charts, etc. The arcsine distribution and its variants are discussed in Chapter 5, along with arcsine transforms and Brownian motion. This is followed by gamma distribution and its applications in civil engineering, metallurgy, and reliability. Chapter 7 is on cosine distribution and its applications in signal processing, antenna design, and robotics path planning. Chapter 8 discusses the normal distribution and its variants like lognormal, and skew-normal distributions. The last chapter of Part I is on Cauchy distribution, its variants and applications in thermodynamics, interferometer design, and carbon-nanotube strain sensing. A new volume (Part II) covers inverse Gaussian, Laplace, Pareto, 2, T, F, Weibull, Rayleigh, Maxwell, and Gumbel distributions.
Continuous Distributions in Engineering and the Applied Sciences -- Part II
Author: Rajan Chattamvelli
Publisher: Springer Nature
ISBN: 3031024354
Category : Mathematics
Languages : en
Pages : 145
Book Description
This is the second part of our book on continuous statistical distributions. It covers inverse-Gaussian, Birnbaum-Saunders, Pareto, Laplace, central 2, , , Weibull, Rayleigh, Maxwell, and extreme value distributions. Important properties of these distribution are documented, and most common practical applications are discussed. This book can be used as a reference material for graduate courses in engineering statistics, mathematical statistics, and econometrics. Professionals and practitioners working in various fields will also find some of the chapters to be useful. Although an extensive literature exists on each of these distributions, we were forced to limit the size of each chapter and the number of references given at the end due to the publishing plan of this book that limits its size. Nevertheless, we gratefully acknowledge the contribution of all those authors whose names have been left out. Some knowledge in introductory algebra and college calculus is assumed throughout the book. Integration is extensively used in several chapters, and many results discussed in Part I (Chapters 1 to 9) of our book are used in this volume. Chapter 10 is on Inverse Gaussian distribution and its extensions. The Birnbaum-Saunders distribution and its extensions along with applications in actuarial sciences is discussed in Chapter 11. Chapter 12 discusses Pareto distribution and its extensions. The Laplace distribution and its applications in navigational errors is discussed in the next chapter. This is followed by central chi-squared distribution and its applications in statistical inference, bioinformatics and genomics. Chapter 15 discusses Student's distribution, its extensions and applications in statistical inference. The distribution and its applications in statistical inference appears next. Chapter 17 is on Weibull distribution and its applications in geology and reliability engineering. Next two chapters are on Rayleigh and Maxwell distributions and its applications in communications, wind energy modeling, kinetic gas theory, nuclear and thermal engineering, and physical chemistry. The last chapter is on Gumbel distribution, its applications in the law of rare exceedances. Suggestions for improvement are welcome. Please send them to [email protected].
Publisher: Springer Nature
ISBN: 3031024354
Category : Mathematics
Languages : en
Pages : 145
Book Description
This is the second part of our book on continuous statistical distributions. It covers inverse-Gaussian, Birnbaum-Saunders, Pareto, Laplace, central 2, , , Weibull, Rayleigh, Maxwell, and extreme value distributions. Important properties of these distribution are documented, and most common practical applications are discussed. This book can be used as a reference material for graduate courses in engineering statistics, mathematical statistics, and econometrics. Professionals and practitioners working in various fields will also find some of the chapters to be useful. Although an extensive literature exists on each of these distributions, we were forced to limit the size of each chapter and the number of references given at the end due to the publishing plan of this book that limits its size. Nevertheless, we gratefully acknowledge the contribution of all those authors whose names have been left out. Some knowledge in introductory algebra and college calculus is assumed throughout the book. Integration is extensively used in several chapters, and many results discussed in Part I (Chapters 1 to 9) of our book are used in this volume. Chapter 10 is on Inverse Gaussian distribution and its extensions. The Birnbaum-Saunders distribution and its extensions along with applications in actuarial sciences is discussed in Chapter 11. Chapter 12 discusses Pareto distribution and its extensions. The Laplace distribution and its applications in navigational errors is discussed in the next chapter. This is followed by central chi-squared distribution and its applications in statistical inference, bioinformatics and genomics. Chapter 15 discusses Student's distribution, its extensions and applications in statistical inference. The distribution and its applications in statistical inference appears next. Chapter 17 is on Weibull distribution and its applications in geology and reliability engineering. Next two chapters are on Rayleigh and Maxwell distributions and its applications in communications, wind energy modeling, kinetic gas theory, nuclear and thermal engineering, and physical chemistry. The last chapter is on Gumbel distribution, its applications in the law of rare exceedances. Suggestions for improvement are welcome. Please send them to [email protected].
Descriptive Statistics for Scientists and Engineers
Author: Rajan Chattamvelli
Publisher: Springer Nature
ISBN: 3031323300
Category : Technology & Engineering
Languages : en
Pages : 142
Book Description
This book introduces descriptive statistics and covers a broad range of topics of interest to students and researchers in various applied science disciplines. This includes measures of location, spread, skewness, and kurtosis; absolute and relative measures; and classification of spread, skewness, and kurtosis measures, L-moment based measures, van Zwet ordering of kurtosis, and multivariate kurtosis. Several novel topics are discussed including the recursive algorithm for sample variance; simplification of complicated summation expressions; updating formulas for sample geometric, harmonic and weighted means; divide-and-conquer algorithms for sample variance and covariance; L-skewness; spectral kurtosis, etc. A large number of exercises are included in each chapter that are drawn from various engineering fields along with examples that are illustrated using the R programming language. Basic concepts are introduced before moving on to computational aspects. Some applications in bioinformatics, finance, metallurgy, pharmacokinetics (PK), solid mechanics, and signal processing are briefly discussed. Every analyst who works with numeric data will find the discussion very illuminating and easy to follow.
Publisher: Springer Nature
ISBN: 3031323300
Category : Technology & Engineering
Languages : en
Pages : 142
Book Description
This book introduces descriptive statistics and covers a broad range of topics of interest to students and researchers in various applied science disciplines. This includes measures of location, spread, skewness, and kurtosis; absolute and relative measures; and classification of spread, skewness, and kurtosis measures, L-moment based measures, van Zwet ordering of kurtosis, and multivariate kurtosis. Several novel topics are discussed including the recursive algorithm for sample variance; simplification of complicated summation expressions; updating formulas for sample geometric, harmonic and weighted means; divide-and-conquer algorithms for sample variance and covariance; L-skewness; spectral kurtosis, etc. A large number of exercises are included in each chapter that are drawn from various engineering fields along with examples that are illustrated using the R programming language. Basic concepts are introduced before moving on to computational aspects. Some applications in bioinformatics, finance, metallurgy, pharmacokinetics (PK), solid mechanics, and signal processing are briefly discussed. Every analyst who works with numeric data will find the discussion very illuminating and easy to follow.
Random Variables for Scientists and Engineers
Author: Rajan Chattamvelli
Publisher: Springer Nature
ISBN: 3031589319
Category :
Languages : en
Pages : 161
Book Description
Publisher: Springer Nature
ISBN: 3031589319
Category :
Languages : en
Pages : 161
Book Description
Statistical Distributions in Engineering
Author: Karl V. Bury
Publisher: Cambridge University Press
ISBN: 9780521635066
Category : Mathematics
Languages : en
Pages : 386
Book Description
This 1999 book presents single-variable statistical distributions useful in solving practical problems in a wide range of engineering contexts.
Publisher: Cambridge University Press
ISBN: 9780521635066
Category : Mathematics
Languages : en
Pages : 386
Book Description
This 1999 book presents single-variable statistical distributions useful in solving practical problems in a wide range of engineering contexts.
A First Course in Complex Analysis
Author: Allan R. Willms
Publisher: Morgan & Claypool Publishers
ISBN: 1636393152
Category : Mathematics
Languages : en
Pages : 237
Book Description
This book introduces complex analysis and is appropriate for a first course in the subject at typically the third-year University level. It introduces the exponential function very early but does so rigorously. It covers the usual topics of functions, differentiation, analyticity, contour integration, the theorems of Cauchy and their many consequences, Taylor and Laurent series, residue theory, the computation of certain improper real integrals, and a brief introduction to conformal mapping. Throughout the text an emphasis is placed on geometric properties of complex numbers and visualization of complex mappings.
Publisher: Morgan & Claypool Publishers
ISBN: 1636393152
Category : Mathematics
Languages : en
Pages : 237
Book Description
This book introduces complex analysis and is appropriate for a first course in the subject at typically the third-year University level. It introduces the exponential function very early but does so rigorously. It covers the usual topics of functions, differentiation, analyticity, contour integration, the theorems of Cauchy and their many consequences, Taylor and Laurent series, residue theory, the computation of certain improper real integrals, and a brief introduction to conformal mapping. Throughout the text an emphasis is placed on geometric properties of complex numbers and visualization of complex mappings.
Mathematical Problem Factories
Author: Andrew McEachern
Publisher: Springer Nature
ISBN: 3031024362
Category : Mathematics
Languages : en
Pages : 147
Book Description
A problem factory consists of a traditional mathematical analysis of a type of problem that describes many, ideally all, ways that the problems of that type can be cast in a fashion that allows teachers or parents to generate problems for enrichment exercises, tests, and classwork. Some problem factories are easier than others for a teacher or parent to apply, so we also include banks of example problems for users. This text goes through the definition of a problem factory in detail and works through many examples of problem factories. It gives banks of questions generated using each of the examples of problem factories, both the easy ones and the hard ones. This text looks at sequence extension problems (what number comes next?), basic analytic geometry, problems on whole numbers, diagrammatic representations of systems of equations, domino tiling puzzles, and puzzles based on combinatorial graphs. The final chapter previews other possible problem factories.
Publisher: Springer Nature
ISBN: 3031024362
Category : Mathematics
Languages : en
Pages : 147
Book Description
A problem factory consists of a traditional mathematical analysis of a type of problem that describes many, ideally all, ways that the problems of that type can be cast in a fashion that allows teachers or parents to generate problems for enrichment exercises, tests, and classwork. Some problem factories are easier than others for a teacher or parent to apply, so we also include banks of example problems for users. This text goes through the definition of a problem factory in detail and works through many examples of problem factories. It gives banks of questions generated using each of the examples of problem factories, both the easy ones and the hard ones. This text looks at sequence extension problems (what number comes next?), basic analytic geometry, problems on whole numbers, diagrammatic representations of systems of equations, domino tiling puzzles, and puzzles based on combinatorial graphs. The final chapter previews other possible problem factories.
Data-Guided Healthcare Decision Making
Author: Ramalingam Shanmugam
Publisher: Cambridge University Press
ISBN: 1009212001
Category : Medical
Languages : en
Pages : 529
Book Description
How does data evidence matter in decision-making in healthcare? How do you implement and maintain cost effective healthcare operations? Do decision trees help to sharpen decision making? This book will answer these questions, demystifying the many questions by clearly showing how to analyse data and how to interpret the results – vital skills for anyone who will go on to work in health administration in hospitals, clinics, pharmaceutical or insurance industries. Written by an expert in health and medical informatics, this book introduces readers to the fundamentals of operational decision making by illustrating the ideas and tools to reach optimal healthcare, drawing on numerous healthcare data sets from multiple sources. Aimed at an audience of graduate students and lecturers in Healthcare Administration and Business Administration courses and heavily illustrated throughout, this book includes up-to-date concepts, new methodologies and interpretations using widely available software: Excel, Microsoft Mathematics, MathSolver and JASP.
Publisher: Cambridge University Press
ISBN: 1009212001
Category : Medical
Languages : en
Pages : 529
Book Description
How does data evidence matter in decision-making in healthcare? How do you implement and maintain cost effective healthcare operations? Do decision trees help to sharpen decision making? This book will answer these questions, demystifying the many questions by clearly showing how to analyse data and how to interpret the results – vital skills for anyone who will go on to work in health administration in hospitals, clinics, pharmaceutical or insurance industries. Written by an expert in health and medical informatics, this book introduces readers to the fundamentals of operational decision making by illustrating the ideas and tools to reach optimal healthcare, drawing on numerous healthcare data sets from multiple sources. Aimed at an audience of graduate students and lecturers in Healthcare Administration and Business Administration courses and heavily illustrated throughout, this book includes up-to-date concepts, new methodologies and interpretations using widely available software: Excel, Microsoft Mathematics, MathSolver and JASP.
Aspects of Differential Geometry V
Author: Esteban Calviño-Louzao
Publisher: Springer Nature
ISBN: 303102432X
Category : Mathematics
Languages : en
Pages : 140
Book Description
Book V completes the discussion of the first four books by treating in some detail the analytic results in elliptic operator theory used previously. Chapters 16 and 17 provide a treatment of the techniques in Hilbert space, the Fourier transform, and elliptic operator theory necessary to establish the spectral decomposition theorem of a self-adjoint operator of Laplace type and to prove the Hodge Decomposition Theorem that was stated without proof in Book II. In Chapter 18, we treat the de Rham complex and the Dolbeault complex, and discuss spinors. In Chapter 19, we discuss complex geometry and establish the Kodaira Embedding Theorem.
Publisher: Springer Nature
ISBN: 303102432X
Category : Mathematics
Languages : en
Pages : 140
Book Description
Book V completes the discussion of the first four books by treating in some detail the analytic results in elliptic operator theory used previously. Chapters 16 and 17 provide a treatment of the techniques in Hilbert space, the Fourier transform, and elliptic operator theory necessary to establish the spectral decomposition theorem of a self-adjoint operator of Laplace type and to prove the Hodge Decomposition Theorem that was stated without proof in Book II. In Chapter 18, we treat the de Rham complex and the Dolbeault complex, and discuss spinors. In Chapter 19, we discuss complex geometry and establish the Kodaira Embedding Theorem.
The Navier–Stokes Problem
Author: Alexander G. Ramm
Publisher: Springer Nature
ISBN: 3031024311
Category : Mathematics
Languages : en
Pages : 61
Book Description
The main result of this book is a proof of the contradictory nature of the Navier‒Stokes problem (NSP). It is proved that the NSP is physically wrong, and the solution to the NSP does not exist on R+ (except for the case when the initial velocity and the exterior force are both equal to zero; in this case, the solution (, ) to the NSP exists for all ≥ 0 and (, ) = 0). It is shown that if the initial data 0() ≢ 0, (,) = 0 and the solution to the NSP exists for all ε R+, then 0() := (, 0) = 0. This Paradox proves that the NSP is physically incorrect and mathematically unsolvable, in general. Uniqueness of the solution to the NSP in the space 21(R3) × C(R+) is proved, 21(R3) is the Sobolev space, R+ = [0, ∞). Theory of integral equations and inequalities with hyper-singular kernels is developed. The NSP is reduced to an integral inequality with a hyper-singular kernel.
Publisher: Springer Nature
ISBN: 3031024311
Category : Mathematics
Languages : en
Pages : 61
Book Description
The main result of this book is a proof of the contradictory nature of the Navier‒Stokes problem (NSP). It is proved that the NSP is physically wrong, and the solution to the NSP does not exist on R+ (except for the case when the initial velocity and the exterior force are both equal to zero; in this case, the solution (, ) to the NSP exists for all ≥ 0 and (, ) = 0). It is shown that if the initial data 0() ≢ 0, (,) = 0 and the solution to the NSP exists for all ε R+, then 0() := (, 0) = 0. This Paradox proves that the NSP is physically incorrect and mathematically unsolvable, in general. Uniqueness of the solution to the NSP in the space 21(R3) × C(R+) is proved, 21(R3) is the Sobolev space, R+ = [0, ∞). Theory of integral equations and inequalities with hyper-singular kernels is developed. The NSP is reduced to an integral inequality with a hyper-singular kernel.