Continuous Bounded Cohomology of Locally Compact Groups

Continuous Bounded Cohomology of Locally Compact Groups PDF Author: Nicolas Monod
Publisher: Springer
ISBN: 3540449620
Category : Mathematics
Languages : en
Pages : 219

Book Description
Recent research has repeatedly led to connections between important rigidity questions and bounded cohomology. However, the latter has remained by and large intractable. This monograph introduces the functorial study of the continuous bounded cohomology for topological groups, with coefficients in Banach modules. The powerful techniques of this more general theory have successfully solved a number of the original problems in bounded cohomology. As applications, one obtains, in particular, rigidity results for actions on the circle, for representations on complex hyperbolic spaces and on Teichmüller spaces. A special effort has been made to provide detailed proofs or references in quite some generality.

Gromov’s Theory of Multicomplexes with Applications to Bounded Cohomology and Simplicial Volume

Gromov’s Theory of Multicomplexes with Applications to Bounded Cohomology and Simplicial Volume PDF Author: Roberto Frigerio
Publisher: American Mathematical Society
ISBN: 1470459914
Category : Mathematics
Languages : en
Pages : 166

Book Description
View the abstract.

On the Algebraic Foundations of Bounded Cohomology

On the Algebraic Foundations of Bounded Cohomology PDF Author: Theo Bühler
Publisher: American Mathematical Soc.
ISBN: 0821853112
Category : Mathematics
Languages : en
Pages : 126

Book Description
It is a widespread opinion among experts that (continuous) bounded cohomology cannot be interpreted as a derived functor and that triangulated methods break down. The author proves that this is wrong. He uses the formalism of exact categories and their derived categories in order to construct a classical derived functor on the category of Banach $G$-modules with values in Waelbroeck's abelian category. This gives us an axiomatic characterization of this theory for free, and it is a simple matter to reconstruct the classical semi-normed cohomology spaces out of Waelbroeck's category. The author proves that the derived categories of right bounded and of left bounded complexes of Banach $G$-modules are equivalent to the derived category of two abelian categories (one for each boundedness condition), a consequence of the theory of abstract truncation and hearts of $t$-structures. Moreover, he proves that the derived categories of Banach $G$-modules can be constructed as the homotopy categories of model structures on the categories of chain complexes of Banach $G$-modules, thus proving that the theory fits into yet another standard framework of homological and homotopical algebra.

Bounded Cohomology and Simplicial Volume

Bounded Cohomology and Simplicial Volume PDF Author: Caterina Campagnolo
Publisher: Cambridge University Press
ISBN: 100918329X
Category : Mathematics
Languages : en
Pages : 171

Book Description
An overview of bounded cohomology and simplicial volume covering the basics of the subject and recent research directions.

Normed Amenability and Bounded Cohomology over Non-Archimedean Fields

Normed Amenability and Bounded Cohomology over Non-Archimedean Fields PDF Author: Francesco Fournier-Facio
Publisher: American Mathematical Society
ISBN: 1470470918
Category : Mathematics
Languages : en
Pages : 116

Book Description
View the abstract.

Geometry, Rigidity, and Group Actions

Geometry, Rigidity, and Group Actions PDF Author: Benson Farb
Publisher: University of Chicago Press
ISBN: 0226237907
Category : Mathematics
Languages : en
Pages : 659

Book Description
The study of group actions is more than a hundred years old but remains to this day a vibrant and widely studied topic in a variety of mathematic fields. A central development in the last fifty years is the phenomenon of rigidity, whereby one can classify actions of certain groups, such as lattices in semi-simple Lie groups. This provides a way to classify all possible symmetries of important spaces and all spaces admitting given symmetries. Paradigmatic results can be found in the seminal work of George Mostow, Gergory Margulis, and Robert J. Zimmer, among others. The papers in Geometry, Rigidity, and Group Actions explore the role of group actions and rigidity in several areas of mathematics, including ergodic theory, dynamics, geometry, topology, and the algebraic properties of representation varieties. In some cases, the dynamics of the possible group actions are the principal focus of inquiry. In other cases, the dynamics of group actions are a tool for proving theorems about algebra, geometry, or topology. This volume contains surveys of some of the main directions in the field, as well as research articles on topics of current interest.

Rigidity in Dynamics and Geometry

Rigidity in Dynamics and Geometry PDF Author: Marc Burger
Publisher: Springer Science & Business Media
ISBN: 3662047438
Category : Mathematics
Languages : en
Pages : 494

Book Description
This volume of proceedings is an offspring of the special semester Ergodic Theory, Geometric Rigidity and Number Theory which was held at the Isaac Newton Institute for Mathematical Sciences in Cambridge, UK, from Jan uary until July, 2000. Beside the activities during the semester, there were workshops held in January, March and July, the first being of introductory nature with five short courses delivered over a week. Although the quality of the workshops was excellent throughout the semester, the idea of these proceedings came about during the March workshop, which is hence more prominently represented, The format of the volume has undergone many changes, but what has remained untouched is the enthusiasm of the contributors since the onset of the project: suffice it to say that even though only two months elapsed between the time we contacted the potential authors and the deadline to submit the papers, the deadline was respected in the vast majority of the cases. The scope of the papers is not completely uniform throughout the volume, although there are some points in common. We asked the authors to write papers keeping in mind the idea that they should be accessible to students. At the same time, we wanted the papers not to be a summary of results that appeared somewhere else.

Random Walks and Geometry

Random Walks and Geometry PDF Author: Vadim Kaimanovich
Publisher: Walter de Gruyter
ISBN: 3110198088
Category : Mathematics
Languages : en
Pages : 545

Book Description
Die jüngsten Entwicklungen zeigen, dass sich Wahrscheinlichkeitsverfahren zu einem sehr wirkungsvollen Werkzeug entwickelt haben, und das auf so unterschiedlichen Gebieten wie statistische Physik, dynamische Systeme, Riemann'sche Geometrie, Gruppentheorie, harmonische Analyse, Graphentheorie und Informatik.

L2-Invariants: Theory and Applications to Geometry and K-Theory

L2-Invariants: Theory and Applications to Geometry and K-Theory PDF Author: Wolfgang Lück
Publisher: Springer Science & Business Media
ISBN: 3662046873
Category : Mathematics
Languages : en
Pages : 604

Book Description
In algebraic topology some classical invariants - such as Betti numbers and Reidemeister torsion - are defined for compact spaces and finite group actions. They can be generalized using von Neumann algebras and their traces, and applied also to non-compact spaces and infinite groups. These new L2-invariants contain very interesting and novel information and can be applied to problems arising in topology, K-Theory, differential geometry, non-commutative geometry and spectral theory. The book, written in an accessible manner, presents a comprehensive introduction to this area of research, as well as its most recent results and developments.

Bounded Cohomology of Discrete Groups

Bounded Cohomology of Discrete Groups PDF Author: Roberto Frigerio
Publisher: American Mathematical Soc.
ISBN: 1470441462
Category : Mathematics
Languages : en
Pages : 213

Book Description
The theory of bounded cohomology, introduced by Gromov in the late 1980s, has had powerful applications in geometric group theory and the geometry and topology of manifolds, and has been the topic of active research continuing to this day. This monograph provides a unified, self-contained introduction to the theory and its applications, making it accessible to a student who has completed a first course in algebraic topology and manifold theory. The book can be used as a source for research projects for master's students, as a thorough introduction to the field for graduate students, and as a valuable landmark text for researchers, providing both the details of the theory of bounded cohomology and links of the theory to other closely related areas. The first part of the book is devoted to settling the fundamental definitions of the theory, and to proving some of the (by now classical) results on low-dimensional bounded cohomology and on bounded cohomology of topological spaces. The second part describes applications of the theory to the study of the simplicial volume of manifolds, to the classification of circle actions, to the analysis of maximal representations of surface groups, and to the study of flat vector bundles with a particular emphasis on the possible use of bounded cohomology in relation with the Chern conjecture. Each chapter ends with a discussion of further reading that puts the presented results in a broader context.