Construction of Structured LDPC Codes Based on Geometry Decomposition, Masking and Superposition PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Construction of Structured LDPC Codes Based on Geometry Decomposition, Masking and Superposition PDF full book. Access full book title Construction of Structured LDPC Codes Based on Geometry Decomposition, Masking and Superposition by Jun Xu. Download full books in PDF and EPUB format.

Construction of Structured LDPC Codes Based on Geometry Decomposition, Masking and Superposition

Construction of Structured LDPC Codes Based on Geometry Decomposition, Masking and Superposition PDF Author: Jun Xu
Publisher:
ISBN:
Category :
Languages : en
Pages : 356

Book Description


Construction of Structured LDPC Codes Based on Geometry Decomposition, Masking and Superposition

Construction of Structured LDPC Codes Based on Geometry Decomposition, Masking and Superposition PDF Author: Jun Xu
Publisher:
ISBN:
Category :
Languages : en
Pages : 356

Book Description


Construction of Structured Low-density Parity-check Codes

Construction of Structured Low-density Parity-check Codes PDF Author: Lei Chen
Publisher:
ISBN:
Category :
Languages : en
Pages : 340

Book Description


LDPC Code Designs, Constructions, and Unification

LDPC Code Designs, Constructions, and Unification PDF Author: Juane Li
Publisher: Cambridge University Press
ISBN: 1107175682
Category : Computers
Languages : en
Pages : 259

Book Description
In this book, leading authorities unify algebraic- and graph-based LDPC code designs and constructions into a single theoretical framework.

LDPC Codes on Finite Fields

LDPC Codes on Finite Fields PDF Author: Juane Li
Publisher:
ISBN: 9781369201024
Category :
Languages : en
Pages :

Book Description
Due to their capacity-approaching performance which can be achieved with practically implementable iterative decoding algorithms devised based on belief-propagation, low-density parity-check (LDPC) codes have rapid dominance in the applications requiring error control coding. This dissertation is intended to address certain important aspects of the aforementioned issues about LDPC codes. Subjects to be investigated include: (1) flexible and systematic methods for constructing binary LDPC codes with quasi-cyclic structure based on finite fields; (2) construction of high-rate and low-rate quasi-cyclic (QC) LDPC codes to achieve very low error rates without error-floor and with high rate of decoding convergence; (3) construction of binary QC-LDPC codes whose Tanner graphs have girth 8 or larger and contain minimum number of short cycles; (4) developing effective algorithms for enumerating short cycles in the Tanner graph of LDPC codes; (5) devising reduced-complexity decoding schemes and algorithms for binary QC-LDPC codes; (6) effective matrix-theoretic methods for constructing nonbinary (NB) LDPC codes; and (7) reduced-complexity decoding schemes and algorithms for NB LDPC codes. The dissertation presents a simple, flexible and systematic method to construct both binary and nonbinary LDPC codes with quasi-cyclic (QC) structure based on two arbitrary subsets of a finite field. One technique for constructing QC-LDPC codes whose Tanner graphs have girth 8 or larger is also proposed. Simulation results show that these constructed codes perform well over both the additive white Gaussian noise and the binary erasure channels. Also presented in this dissertation is a reduced-complexity decoding scheme to decode binary QC-LDPC codes. The decoding scheme is devised based on the section-wise cyclic structure of the parity-check matrix of a QC-LDPC code. The proposed decoding scheme combined with iterative decoding algorithms of LDPC codes results in no or a relative small performance degradation. Two efficient algorithms for enumerating short cycles in the Tanners graph of LDPC codes are presented. One algorithm is devised based on iterative message-passing algorithm by introducing messages in term of monomials, which is an improvement of the work of Karimi and Banihashemi. The other one is based on the trellis of an LDPC code by finding the partial paths which can form cycles. By removing certain number of cycles, a new code whose Tanner graph has a smaller number of short cycles, a larger girth, or both can be constructed. An algorithm to count and find cycles of lengths four and six in a class of QC-LDPC codes is also proposed. In this dissertation, we also briefly investigate one of the algebraic-based constructions of LDPC code, namely superposition (SP) construction, and one of the graph-based constructions, namely protograph-based (PTG-based) construction. The SP-construction method is re-interpreted in a broader scope from both the algebraic and the graph-theoretic perspectives. From the graph-theoretic point of view, it is shown that the PTG-based construction of LDPC codes is a special case of the SP-construction. An algebraic method for constructing PTG-based QC-LDPC codes through decomposing a small matrix is proposed. Several methods for constructing QC-LDPC codes through the SP-construction are also presented.

Dissertation Abstracts International

Dissertation Abstracts International PDF Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 882

Book Description


Construction and Decoding of Codes on Finite Fields and Finite Geometries

Construction and Decoding of Codes on Finite Fields and Finite Geometries PDF Author: Li Zhang
Publisher:
ISBN: 9781124319117
Category :
Languages : en
Pages :

Book Description
In this doctoral dissertation, two constructions of binary low-density parity-check (LDPC) codes with quasi-cyclic (QC) structures are presented. A general construction of RC-constrained arrays of circulant permutation matrices is introduced, then two specific construction methods based on Latin squares and cyclic subgroups are presented. Array masking is also proposed to improve the waterfall-region performance of the QC-LDPC codes. Also, by analyzing the parity check matrices of these codes, combinatorial expressions for their ranks and dimensions are derived. Experimental results show that, with iterative decoding algorithms, the constructed codes perform very well over both the additive white Gaussian noise (AWGN) and the binary erasure channels (BEC). Also presented in this dissertation are constructions of QC-LDPC codes based on two special classes of balanced incomplete block designs (BIBDs) derived by Bose. Codes are constructed for both the AWGN channel and the binary burst erasure channel (BBEC). Experimental results show that the codes constructed perform well not only over these two types of channels but also over the BEC. Finally, a two stage iterative decoding is presented to decode a class of cyclic Euclidean geometry codes. By exploiting the inherent geometry structure of the codes and avoiding the degrading effect of short cycles, the proposed algorithm provides good decoding performance of the codes.

Channel Codes

Channel Codes PDF Author: William Ryan
Publisher: Cambridge University Press
ISBN: 1139483013
Category : Technology & Engineering
Languages : en
Pages : 709

Book Description
Channel coding lies at the heart of digital communication and data storage, and this detailed introduction describes the core theory as well as decoding algorithms, implementation details, and performance analyses. In this book, Professors Ryan and Lin provide clear information on modern channel codes, including turbo and low-density parity-check (LDPC) codes. They also present detailed coverage of BCH codes, Reed-Solomon codes, convolutional codes, finite geometry codes, and product codes, providing a one-stop resource for both classical and modern coding techniques. Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then extend to advanced topics such as code ensemble performance analyses and algebraic code design. 250 varied and stimulating end-of-chapter problems are also included to test and enhance learning, making this an essential resource for students and practitioners alike.

Fundamentals of Digital Communication

Fundamentals of Digital Communication PDF Author: Upamanyu Madhow
Publisher: Cambridge University Press
ISBN: 1139470264
Category : Technology & Engineering
Languages : en
Pages : 578

Book Description
This is a concise presentation of the concepts underlying the design of digital communication systems, without the detail that can overwhelm students. Many examples, from the basic to the cutting-edge, show how the theory is used in the design of modern systems and the relevance of this theory will motivate students. The theory is supported by practical algorithms so that the student can perform computations and simulations. Leading edge topics in coding and wireless communication make this an ideal text for students taking just one course on the subject. Fundamentals of Digital Communications has coverage of turbo and LDPC codes in sufficient detail and clarity to enable hands-on implementation and performance evaluation, as well as 'just enough' information theory to enable computation of performance benchmarks to compare them against. Other unique features include space-time communication and geometric insights into noncoherent communication and equalization.

LTE - The UMTS Long Term Evolution

LTE - The UMTS Long Term Evolution PDF Author: Stefania Sesia
Publisher: John Wiley & Sons
ISBN: 0470660252
Category : Technology & Engineering
Languages : en
Pages : 793

Book Description
"Where this book is exceptional is that the reader will not just learn how LTE works but why it works" Adrian Scrase, ETSI Vice-President, International Partnership Projects Following on the success of the first edition, this book is fully updated, covering the latest additions to LTE and the key features of LTE-Advanced. This book builds on the success of its predecessor, offering the same comprehensive system-level understanding built on explanations of the underlying theory, now expanded to include complete coverage of Release 9 and the developing specifications for LTE-Advanced. The book is a collaborative effort of more than 40 key experts representing over 20 companies actively participating in the development of LTE, as well as academia. The book highlights practical implications, illustrates the expected performance, and draws comparisons with the well-known WCDMA/HSPA standards. The authors not only pay special attention to the physical layer, giving an insight into the fundamental concepts of OFDMA-FDMA and MIMO, but also cover the higher protocol layers and system architecture to enable the reader to gain an overall understanding of the system. Key New Features: Comprehensively updated with the latest changes of the LTE Release 8 specifications, including improved coverage of Radio Resource Management RF aspects and performance requirements Provides detailed coverage of the new LTE Release 9 features, including: eMBMS, dual-layer beamforming, user equipment positioning, home eNodeBs / femtocells and pico cells and self-optimizing networks Evaluates the LTE system performance Introduces LTE-Advanced, explaining its context and motivation, as well as the key new features including: carrier aggregation, relaying, high-order MIMO, and Cooperative Multi-Point transmission (CoMP). Includes an accompanying website containing a complete list of acronyms related to LTE and LTE-Advanced, with a brief description of each (http://www.wiley.com/go/sesia_theumts) This book is an invaluable reference for all research and development engineers involved in implementation of LTE or LTE-Advanced, as well as graduate and PhD students in wireless communications. Network operators, service providers and R&D managers will also find this book insightful.

Reversible Computation: Extending Horizons of Computing

Reversible Computation: Extending Horizons of Computing PDF Author: Irek Ulidowski
Publisher: Springer Nature
ISBN: 3030473619
Category : Computers
Languages : en
Pages : 250

Book Description
This open access State-of-the-Art Survey presents the main recent scientific outcomes in the area of reversible computation, focusing on those that have emerged during COST Action IC1405 "Reversible Computation - Extending Horizons of Computing", a European research network that operated from May 2015 to April 2019. Reversible computation is a new paradigm that extends the traditional forwards-only mode of computation with the ability to execute in reverse, so that computation can run backwards as easily and naturally as forwards. It aims to deliver novel computing devices and software, and to enhance existing systems by equipping them with reversibility. There are many potential applications of reversible computation, including languages and software tools for reliable and recovery-oriented distributed systems and revolutionary reversible logic gates and circuits, but they can only be realized and have lasting effect if conceptual and firm theoretical foundations are established first.