Constrained Optimization and Lagrange Multiplier Methods PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Constrained Optimization and Lagrange Multiplier Methods PDF full book. Access full book title Constrained Optimization and Lagrange Multiplier Methods by Dimitri P. Bertsekas. Download full books in PDF and EPUB format.

Constrained Optimization and Lagrange Multiplier Methods

Constrained Optimization and Lagrange Multiplier Methods PDF Author: Dimitri P. Bertsekas
Publisher: Academic Press
ISBN: 148326047X
Category : Mathematics
Languages : en
Pages : 412

Book Description
Computer Science and Applied Mathematics: Constrained Optimization and Lagrange Multiplier Methods focuses on the advancements in the applications of the Lagrange multiplier methods for constrained minimization. The publication first offers information on the method of multipliers for equality constrained problems and the method of multipliers for inequality constrained and nondifferentiable optimization problems. Discussions focus on approximation procedures for nondifferentiable and ill-conditioned optimization problems; asymptotically exact minimization in the methods of multipliers; duality framework for the method of multipliers; and the quadratic penalty function method. The text then examines exact penalty methods, including nondifferentiable exact penalty functions; linearization algorithms based on nondifferentiable exact penalty functions; differentiable exact penalty functions; and local and global convergence of Lagrangian methods. The book ponders on the nonquadratic penalty functions of convex programming. Topics include large scale separable integer programming problems and the exponential method of multipliers; classes of penalty functions and corresponding methods of multipliers; and convergence analysis of multiplier methods. The text is a valuable reference for mathematicians and researchers interested in the Lagrange multiplier methods.

Constrained Optimization and Lagrange Multiplier Methods

Constrained Optimization and Lagrange Multiplier Methods PDF Author: Dimitri P. Bertsekas
Publisher: Academic Press
ISBN: 148326047X
Category : Mathematics
Languages : en
Pages : 412

Book Description
Computer Science and Applied Mathematics: Constrained Optimization and Lagrange Multiplier Methods focuses on the advancements in the applications of the Lagrange multiplier methods for constrained minimization. The publication first offers information on the method of multipliers for equality constrained problems and the method of multipliers for inequality constrained and nondifferentiable optimization problems. Discussions focus on approximation procedures for nondifferentiable and ill-conditioned optimization problems; asymptotically exact minimization in the methods of multipliers; duality framework for the method of multipliers; and the quadratic penalty function method. The text then examines exact penalty methods, including nondifferentiable exact penalty functions; linearization algorithms based on nondifferentiable exact penalty functions; differentiable exact penalty functions; and local and global convergence of Lagrangian methods. The book ponders on the nonquadratic penalty functions of convex programming. Topics include large scale separable integer programming problems and the exponential method of multipliers; classes of penalty functions and corresponding methods of multipliers; and convergence analysis of multiplier methods. The text is a valuable reference for mathematicians and researchers interested in the Lagrange multiplier methods.

Constrained Optimization and Lagrange Multiplier Methods

Constrained Optimization and Lagrange Multiplier Methods PDF Author: Dimitri P. Bertsekas
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 412

Book Description


Constrained Optimization and Lagrange Multiplier Methods

Constrained Optimization and Lagrange Multiplier Methods PDF Author: Dimitri P. Bertsekas
Publisher:
ISBN:
Category : Mathematics
Languages : ja
Pages : 424

Book Description
Constrained Optimization and Lagrange Multiplier Methods.

Practical Augmented Lagrangian Methods for Constrained Optimization

Practical Augmented Lagrangian Methods for Constrained Optimization PDF Author: Ernesto G. Birgin
Publisher: SIAM
ISBN: 161197335X
Category : Mathematics
Languages : en
Pages : 222

Book Description
This book focuses on Augmented Lagrangian techniques for solving practical constrained optimization problems. The authors rigorously delineate mathematical convergence theory based on sequential optimality conditions and novel constraint qualifications. They also orient the book to practitioners by giving priority to results that provide insight on the practical behavior of algorithms and by providing geometrical and algorithmic interpretations of every mathematical result, and they fully describe a freely available computational package for constrained optimization and illustrate its usefulness with applications.

Lagrange Multiplier Approach to Variational Problems and Applications

Lagrange Multiplier Approach to Variational Problems and Applications PDF Author: Kazufumi Ito
Publisher: SIAM
ISBN: 0898716497
Category : Mathematics
Languages : en
Pages : 354

Book Description
Analyses Lagrange multiplier theory and demonstrates its impact on the development of numerical algorithms for variational problems in function spaces.

Geometric Constraint Solving and Applications

Geometric Constraint Solving and Applications PDF Author: Beat Brüderlin
Publisher: Springer Science & Business Media
ISBN: 3642588980
Category : Computers
Languages : en
Pages : 306

Book Description
Geometric constraint programming increases flexibility in CAD design specifications and leads to new conceptual design paradigms. This volume features a collection of work by leading researchers developing the various aspects of constraint-based product modeling. In an introductory chapter the role of constraints in CAD systems of the future and their implications for the STEP data exchange format are discussed. The main part of the book deals with the application of constraints to conceptual and collaborative design, as well as state-of-the-art mathematical and algorithmic methods for constraint solving.

Practical Optimization

Practical Optimization PDF Author: Andreas Antoniou
Publisher: Springer Science & Business Media
ISBN: 0387711066
Category : Computers
Languages : en
Pages : 675

Book Description
Practical Optimization: Algorithms and Engineering Applications is a hands-on treatment of the subject of optimization. A comprehensive set of problems and exercises makes the book suitable for use in one or two semesters of a first-year graduate course or an advanced undergraduate course. Each half of the book contains a full semester’s worth of complementary yet stand-alone material. The practical orientation of the topics chosen and a wealth of useful examples also make the book suitable for practitioners in the field.

Linear Algebra and Optimization for Machine Learning

Linear Algebra and Optimization for Machine Learning PDF Author: Charu C. Aggarwal
Publisher: Springer Nature
ISBN: 3030403440
Category : Computers
Languages : en
Pages : 507

Book Description
This textbook introduces linear algebra and optimization in the context of machine learning. Examples and exercises are provided throughout the book. A solution manual for the exercises at the end of each chapter is available to teaching instructors. This textbook targets graduate level students and professors in computer science, mathematics and data science. Advanced undergraduate students can also use this textbook. The chapters for this textbook are organized as follows: 1. Linear algebra and its applications: The chapters focus on the basics of linear algebra together with their common applications to singular value decomposition, matrix factorization, similarity matrices (kernel methods), and graph analysis. Numerous machine learning applications have been used as examples, such as spectral clustering, kernel-based classification, and outlier detection. The tight integration of linear algebra methods with examples from machine learning differentiates this book from generic volumes on linear algebra. The focus is clearly on the most relevant aspects of linear algebra for machine learning and to teach readers how to apply these concepts. 2. Optimization and its applications: Much of machine learning is posed as an optimization problem in which we try to maximize the accuracy of regression and classification models. The “parent problem” of optimization-centric machine learning is least-squares regression. Interestingly, this problem arises in both linear algebra and optimization, and is one of the key connecting problems of the two fields. Least-squares regression is also the starting point for support vector machines, logistic regression, and recommender systems. Furthermore, the methods for dimensionality reduction and matrix factorization also require the development of optimization methods. A general view of optimization in computational graphs is discussed together with its applications to back propagation in neural networks. A frequent challenge faced by beginners in machine learning is the extensive background required in linear algebra and optimization. One problem is that the existing linear algebra and optimization courses are not specific to machine learning; therefore, one would typically have to complete more course material than is necessary to pick up machine learning. Furthermore, certain types of ideas and tricks from optimization and linear algebra recur more frequently in machine learning than other application-centric settings. Therefore, there is significant value in developing a view of linear algebra and optimization that is better suited to the specific perspective of machine learning.

Modern Robotics

Modern Robotics PDF Author: Kevin M. Lynch
Publisher: Cambridge University Press
ISBN: 1107156300
Category : Computers
Languages : en
Pages : 545

Book Description
A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.

Convex Optimization Algorithms

Convex Optimization Algorithms PDF Author: Dimitri Bertsekas
Publisher: Athena Scientific
ISBN: 1886529280
Category : Mathematics
Languages : en
Pages : 576

Book Description
This book provides a comprehensive and accessible presentation of algorithms for solving convex optimization problems. It relies on rigorous mathematical analysis, but also aims at an intuitive exposition that makes use of visualization where possible. This is facilitated by the extensive use of analytical and algorithmic concepts of duality, which by nature lend themselves to geometrical interpretation. The book places particular emphasis on modern developments, and their widespread applications in fields such as large-scale resource allocation problems, signal processing, and machine learning. The book is aimed at students, researchers, and practitioners, roughly at the first year graduate level. It is similar in style to the author's 2009"Convex Optimization Theory" book, but can be read independently. The latter book focuses on convexity theory and optimization duality, while the present book focuses on algorithmic issues. The two books share notation, and together cover the entire finite-dimensional convex optimization methodology. To facilitate readability, the statements of definitions and results of the "theory book" are reproduced without proofs in Appendix B.