Conics and Cubics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Conics and Cubics PDF full book. Access full book title Conics and Cubics by Robert Bix. Download full books in PDF and EPUB format.

Conics and Cubics

Conics and Cubics PDF Author: Robert Bix
Publisher: Springer Science & Business Media
ISBN: 1475729758
Category : Mathematics
Languages : en
Pages : 300

Book Description
Algebraic curves are the graphs of polynomial equations in two vari 3 ables, such as y3 + 5xy2 = x + 2xy. By focusing on curves of degree at most 3-lines, conics, and cubics-this book aims to fill the gap between the familiar subject of analytic geometry and the general study of alge braic curves. This text is designed for a one-semester class that serves both as a a geometry course for mathematics majors in general and as a sequel to college geometry for teachers of secondary school mathe matics. The only prerequisite is first-year calculus. On the one hand, this book can serve as a text for an undergraduate geometry course for all mathematics majors. Algebraic geometry unites algebra, geometry, topology, and analysis, and it is one of the most exciting areas of modem mathematics. Unfortunately, the subject is not easily accessible, and most introductory courses require a prohibitive amount of mathematical machinery. We avoid this problem by focusing on curves of degree at most 3. This keeps the results tangible and the proofs natural. It lets us emphasize the power of two fundamental ideas, homogeneous coordinates and intersection multiplicities.

Conics and Cubics

Conics and Cubics PDF Author: Robert Bix
Publisher: Springer Science & Business Media
ISBN: 1475729758
Category : Mathematics
Languages : en
Pages : 300

Book Description
Algebraic curves are the graphs of polynomial equations in two vari 3 ables, such as y3 + 5xy2 = x + 2xy. By focusing on curves of degree at most 3-lines, conics, and cubics-this book aims to fill the gap between the familiar subject of analytic geometry and the general study of alge braic curves. This text is designed for a one-semester class that serves both as a a geometry course for mathematics majors in general and as a sequel to college geometry for teachers of secondary school mathe matics. The only prerequisite is first-year calculus. On the one hand, this book can serve as a text for an undergraduate geometry course for all mathematics majors. Algebraic geometry unites algebra, geometry, topology, and analysis, and it is one of the most exciting areas of modem mathematics. Unfortunately, the subject is not easily accessible, and most introductory courses require a prohibitive amount of mathematical machinery. We avoid this problem by focusing on curves of degree at most 3. This keeps the results tangible and the proofs natural. It lets us emphasize the power of two fundamental ideas, homogeneous coordinates and intersection multiplicities.

Conics and Cubics

Conics and Cubics PDF Author: Robert Bix
Publisher: Springer Science & Business Media
ISBN: 0387392734
Category : Mathematics
Languages : en
Pages : 356

Book Description
Conics and Cubics offers an accessible and well illustrated introduction to algebraic curves. By classifying irreducible cubics over the real numbers and proving that their points form Abelian groups, the book gives readers easy access to the study of elliptic curves. It includes a simple proof of Bezout’s Theorem on the number of intersections of two curves. The subject area is described by means of concrete and accessible examples. The book is a text for a one-semester course.

Undergraduate Algebraic Geometry

Undergraduate Algebraic Geometry PDF Author: Miles Reid
Publisher: Cambridge University Press
ISBN: 9780521356626
Category : Mathematics
Languages : en
Pages : 144

Book Description
Algebraic geometry is, essentially, the study of the solution of equations and occupies a central position in pure mathematics. This short and readable introduction to algebraic geometry will be ideal for all undergraduate mathematicians coming to the subject for the first time. With the minimum of prerequisites, Dr Reid introduces the reader to the basic concepts of algebraic geometry including: plane conics, cubics and the group law, affine and projective varieties, and non-singularity and dimension. He is at pains to stress the connections the subject has with commutative algebra as well as its relation to topology, differential geometry, and number theory. The book arises from an undergraduate course given at the University of Warwick and contains numerous examples and exercises illustrating the theory.

A Scrapbook of Complex Curve Theory

A Scrapbook of Complex Curve Theory PDF Author: Charles Herbert Clemens
Publisher: American Mathematical Soc.
ISBN: 0821833073
Category : Mathematics
Languages : en
Pages : 202

Book Description
This fine book by Herb Clemens quickly became a favorite of many algebraic geometers when it was first published in 1980. It has been popular with novices and experts ever since. It is written as a book of ``impressions'' of a journey through the theory of complex algebraic curves. Many topics of compelling beauty occur along the way. A cursory glance at the subjects visited reveals a wonderfully eclectic selection, from conics and cubics to theta functions, Jacobians, and questions of moduli. By the end of the book, the theme of theta functions becomes clear, culminating in the Schottky problem. The author's intent was to motivate further study and to stimulate mathematical activity. The attentive reader will learn much about complex algebraic curves and the tools used to study them. The book can be especially useful to anyone preparing a course on the topic of complex curves or anyone interested in supplementing his/her reading.

Classical Algebraic Geometry

Classical Algebraic Geometry PDF Author: Igor V. Dolgachev
Publisher: Cambridge University Press
ISBN: 1139560786
Category : Mathematics
Languages : en
Pages : 653

Book Description
Algebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.

Triangles and Quadrilaterals Inscribed to a Cubic and Circumscribed to a Conic

Triangles and Quadrilaterals Inscribed to a Cubic and Circumscribed to a Conic PDF Author: Henry Seely White
Publisher:
ISBN:
Category : Curves, Cubic
Languages : en
Pages : 16

Book Description


Plane Cubics and Irrational Covariant Cubics

Plane Cubics and Irrational Covariant Cubics PDF Author: Henry Seely White
Publisher:
ISBN:
Category : Curves, Cubic
Languages : en
Pages : 24

Book Description


3264 and All That

3264 and All That PDF Author: David Eisenbud
Publisher: Cambridge University Press
ISBN: 1107017084
Category : Mathematics
Languages : en
Pages : 633

Book Description
3264, the mathematical solution to a question concerning geometric figures.

Proceedings of the London Mathematical Society

Proceedings of the London Mathematical Society PDF Author: London Mathematical Society
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 892

Book Description


Pencils of Cubics and Algebraic Curves in the Real Projective Plane

Pencils of Cubics and Algebraic Curves in the Real Projective Plane PDF Author: Séverine Fiedler - Le Touzé
Publisher: CRC Press
ISBN: 0429838247
Category : Mathematics
Languages : en
Pages : 225

Book Description
Pencils of Cubics and Algebraic Curves in the Real Projective Plane thoroughly examines the combinatorial configurations of n generic points in RP2. Especially how it is the data describing the mutual position of each point with respect to lines and conics passing through others. The first section in this book answers questions such as, can one count the combinatorial configurations up to the action of the symmetric group? How are they pairwise connected via almost generic configurations? These questions are addressed using rational cubics and pencils of cubics for n = 6 and 7. The book’s second section deals with configurations of eight points in the convex position. Both the combinatorial configurations and combinatorial pencils are classified up to the action of the dihedral group D8. Finally, the third section contains plentiful applications and results around Hilbert’s sixteenth problem. The author meticulously wrote this book based upon years of research devoted to the topic. The book is particularly useful for researchers and graduate students interested in topology, algebraic geometry and combinatorics. Features: Examines how the shape of pencils depends on the corresponding configurations of points Includes topology of real algebraic curves Contains numerous applications and results around Hilbert’s sixteenth problem About the Author: Séverine Fiedler-le Touzé has published several papers on this topic and has been invited to present at many conferences. She holds a Ph.D. from University Rennes1 and was a post-doc at the Mathematical Sciences Research Institute in Berkeley, California.