Author: Branko Grünbaum
Publisher: American Mathematical Soc.
ISBN: 0821843087
Category : Mathematics
Languages : en
Pages : 421
Book Description
This is the only book on the topic of geometric configurations of points and lines. It presents in detail the history of the topic, with its surges and declines since its beginning in 1876. It covers all the advances in the field since the revival of interest in geometric configurations some 20 years ago. The author's contributions are central to this revival. In particular, he initiated the study of 4-configurations (that is, those that contain four points on each line, and four lines through each point); the results are fully described in the text. The main novelty in the approach to all geometric configurations is the concentration on their symmetries, which make it possible to deal with configurations of rather large sizes. The book brings the readers to the limits of present knowledge in a leisurely way, enabling them to enjoy the material as well as entice them to try their hand at expanding it.
Configurations of Points and Lines
Author: Branko Grünbaum
Publisher: American Mathematical Soc.
ISBN: 0821843087
Category : Mathematics
Languages : en
Pages : 421
Book Description
This is the only book on the topic of geometric configurations of points and lines. It presents in detail the history of the topic, with its surges and declines since its beginning in 1876. It covers all the advances in the field since the revival of interest in geometric configurations some 20 years ago. The author's contributions are central to this revival. In particular, he initiated the study of 4-configurations (that is, those that contain four points on each line, and four lines through each point); the results are fully described in the text. The main novelty in the approach to all geometric configurations is the concentration on their symmetries, which make it possible to deal with configurations of rather large sizes. The book brings the readers to the limits of present knowledge in a leisurely way, enabling them to enjoy the material as well as entice them to try their hand at expanding it.
Publisher: American Mathematical Soc.
ISBN: 0821843087
Category : Mathematics
Languages : en
Pages : 421
Book Description
This is the only book on the topic of geometric configurations of points and lines. It presents in detail the history of the topic, with its surges and declines since its beginning in 1876. It covers all the advances in the field since the revival of interest in geometric configurations some 20 years ago. The author's contributions are central to this revival. In particular, he initiated the study of 4-configurations (that is, those that contain four points on each line, and four lines through each point); the results are fully described in the text. The main novelty in the approach to all geometric configurations is the concentration on their symmetries, which make it possible to deal with configurations of rather large sizes. The book brings the readers to the limits of present knowledge in a leisurely way, enabling them to enjoy the material as well as entice them to try their hand at expanding it.
Forbidden Configurations in Discrete Geometry
Author: David Eppstein
Publisher: Cambridge University Press
ISBN: 1108423914
Category : Computers
Languages : en
Pages : 241
Book Description
Unifies discrete and computational geometry by using forbidden patterns of points to characterize many of its problems.
Publisher: Cambridge University Press
ISBN: 1108423914
Category : Computers
Languages : en
Pages : 241
Book Description
Unifies discrete and computational geometry by using forbidden patterns of points to characterize many of its problems.
Lines and Curves
Author: Victor Gutenmacher
Publisher: Springer Science & Business Media
ISBN: 1475738099
Category : Mathematics
Languages : en
Pages : 166
Book Description
Broad appeal to undergraduate teachers, students, and engineers; Concise descriptions of properties of basic planar curves from different perspectives; useful handbook for software engineers; A special chapter---"Geometry on the Web"---will further enhance the usefulness of this book as an informal tutorial resource.; Good mathematical notation, descriptions of properties of lines and curves, and the illustration of geometric concepts facilitate the design of computer graphics tools and computer animation.; Video game designers, for example, will find a clear discussion and illustration of hard-to-understand trajectory design concepts.; Good supplementary text for geometry courses at the undergraduate and advanced high school levels
Publisher: Springer Science & Business Media
ISBN: 1475738099
Category : Mathematics
Languages : en
Pages : 166
Book Description
Broad appeal to undergraduate teachers, students, and engineers; Concise descriptions of properties of basic planar curves from different perspectives; useful handbook for software engineers; A special chapter---"Geometry on the Web"---will further enhance the usefulness of this book as an informal tutorial resource.; Good mathematical notation, descriptions of properties of lines and curves, and the illustration of geometric concepts facilitate the design of computer graphics tools and computer animation.; Video game designers, for example, will find a clear discussion and illustration of hard-to-understand trajectory design concepts.; Good supplementary text for geometry courses at the undergraduate and advanced high school levels
Forbidden Configurations in Discrete Geometry
Author: David Eppstein
Publisher: Cambridge University Press
ISBN: 1108540279
Category : Computers
Languages : en
Pages : 241
Book Description
This book surveys the mathematical and computational properties of finite sets of points in the plane, covering recent breakthroughs on important problems in discrete geometry, and listing many open problems. It unifies these mathematical and computational views using forbidden configurations, which are patterns that cannot appear in sets with a given property, and explores the implications of this unified view. Written with minimal prerequisites and featuring plenty of figures, this engaging book will be of interest to undergraduate students and researchers in mathematics and computer science. Most topics are introduced with a related puzzle or brain-teaser. The topics range from abstract issues of collinearity, convexity, and general position to more applied areas including robust statistical estimation and network visualization, with connections to related areas of mathematics including number theory, graph theory, and the theory of permutation patterns. Pseudocode is included for many algorithms that compute properties of point sets.
Publisher: Cambridge University Press
ISBN: 1108540279
Category : Computers
Languages : en
Pages : 241
Book Description
This book surveys the mathematical and computational properties of finite sets of points in the plane, covering recent breakthroughs on important problems in discrete geometry, and listing many open problems. It unifies these mathematical and computational views using forbidden configurations, which are patterns that cannot appear in sets with a given property, and explores the implications of this unified view. Written with minimal prerequisites and featuring plenty of figures, this engaging book will be of interest to undergraduate students and researchers in mathematics and computer science. Most topics are introduced with a related puzzle or brain-teaser. The topics range from abstract issues of collinearity, convexity, and general position to more applied areas including robust statistical estimation and network visualization, with connections to related areas of mathematics including number theory, graph theory, and the theory of permutation patterns. Pseudocode is included for many algorithms that compute properties of point sets.
Rigidity and Symmetry
Author: Robert Connelly
Publisher: Springer
ISBN: 1493907816
Category : Mathematics
Languages : en
Pages : 378
Book Description
This book contains recent contributions to the fields of rigidity and symmetry with two primary focuses: to present the mathematically rigorous treatment of rigidity of structures and to explore the interaction of geometry, algebra and combinatorics. Contributions present recent trends and advances in discrete geometry, particularly in the theory of polytopes. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory, classical geometry, hyperbolic geometry and topology. Overall, the book shows how researchers from diverse backgrounds explore connections among the various discrete structures with symmetry as the unifying theme. The volume will be a valuable source as an introduction to the ideas of both combinatorial and geometric rigidity theory and its applications, incorporating the surprising impact of symmetry. It will appeal to students at both the advanced undergraduate and graduate levels, as well as post docs, structural engineers and chemists.
Publisher: Springer
ISBN: 1493907816
Category : Mathematics
Languages : en
Pages : 378
Book Description
This book contains recent contributions to the fields of rigidity and symmetry with two primary focuses: to present the mathematically rigorous treatment of rigidity of structures and to explore the interaction of geometry, algebra and combinatorics. Contributions present recent trends and advances in discrete geometry, particularly in the theory of polytopes. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory, classical geometry, hyperbolic geometry and topology. Overall, the book shows how researchers from diverse backgrounds explore connections among the various discrete structures with symmetry as the unifying theme. The volume will be a valuable source as an introduction to the ideas of both combinatorial and geometric rigidity theory and its applications, incorporating the surprising impact of symmetry. It will appeal to students at both the advanced undergraduate and graduate levels, as well as post docs, structural engineers and chemists.
Geometry of Lie Groups
Author: B. Rosenfeld
Publisher: Springer Science & Business Media
ISBN: 147575325X
Category : Mathematics
Languages : en
Pages : 414
Book Description
This book is the result of many years of research in Non-Euclidean Geometries and Geometry of Lie groups, as well as teaching at Moscow State University (1947- 1949), Azerbaijan State University (Baku) (1950-1955), Kolomna Pedagogical Col lege (1955-1970), Moscow Pedagogical University (1971-1990), and Pennsylvania State University (1990-1995). My first books on Non-Euclidean Geometries and Geometry of Lie groups were written in Russian and published in Moscow: Non-Euclidean Geometries (1955) [Ro1] , Multidimensional Spaces (1966) [Ro2] , and Non-Euclidean Spaces (1969) [Ro3]. In [Ro1] I considered non-Euclidean geometries in the broad sense, as geometry of simple Lie groups, since classical non-Euclidean geometries, hyperbolic and elliptic, are geometries of simple Lie groups of classes Bn and D , and geometries of complex n and quaternionic Hermitian elliptic and hyperbolic spaces are geometries of simple Lie groups of classes An and en. [Ro1] contains an exposition of the geometry of classical real non-Euclidean spaces and their interpretations as hyperspheres with identified antipodal points in Euclidean or pseudo-Euclidean spaces, and in projective and conformal spaces. Numerous interpretations of various spaces different from our usual space allow us, like stereoscopic vision, to see many traits of these spaces absent in the usual space.
Publisher: Springer Science & Business Media
ISBN: 147575325X
Category : Mathematics
Languages : en
Pages : 414
Book Description
This book is the result of many years of research in Non-Euclidean Geometries and Geometry of Lie groups, as well as teaching at Moscow State University (1947- 1949), Azerbaijan State University (Baku) (1950-1955), Kolomna Pedagogical Col lege (1955-1970), Moscow Pedagogical University (1971-1990), and Pennsylvania State University (1990-1995). My first books on Non-Euclidean Geometries and Geometry of Lie groups were written in Russian and published in Moscow: Non-Euclidean Geometries (1955) [Ro1] , Multidimensional Spaces (1966) [Ro2] , and Non-Euclidean Spaces (1969) [Ro3]. In [Ro1] I considered non-Euclidean geometries in the broad sense, as geometry of simple Lie groups, since classical non-Euclidean geometries, hyperbolic and elliptic, are geometries of simple Lie groups of classes Bn and D , and geometries of complex n and quaternionic Hermitian elliptic and hyperbolic spaces are geometries of simple Lie groups of classes An and en. [Ro1] contains an exposition of the geometry of classical real non-Euclidean spaces and their interpretations as hyperspheres with identified antipodal points in Euclidean or pseudo-Euclidean spaces, and in projective and conformal spaces. Numerous interpretations of various spaces different from our usual space allow us, like stereoscopic vision, to see many traits of these spaces absent in the usual space.
Configurations from a Graphical Viewpoint
Author: Tomaz Pisanski
Publisher: Springer Science & Business Media
ISBN: 0817683631
Category : Mathematics
Languages : en
Pages : 289
Book Description
Configurations can be studied from a graph-theoretical viewpoint via the so-called Levi graphs and lie at the heart of graphs, groups, surfaces, and geometries, all of which are very active areas of mathematical exploration. In this self-contained textbook, algebraic graph theory is used to introduce groups; topological graph theory is used to explore surfaces; and geometric graph theory is implemented to analyze incidence geometries. After a preview of configurations in Chapter 1, a concise introduction to graph theory is presented in Chapter 2, followed by a geometric introduction to groups in Chapter 3. Maps and surfaces are combinatorially treated in Chapter 4. Chapter 5 introduces the concept of incidence structure through vertex colored graphs, and the combinatorial aspects of classical configurations are studied. Geometric aspects, some historical remarks, references, and applications of classical configurations appear in the last chapter. With over two hundred illustrations, challenging exercises at the end of each chapter, a comprehensive bibliography, and a set of open problems, Configurations from a Graphical Viewpoint is well suited for a graduate graph theory course, an advanced undergraduate seminar, or a self-contained reference for mathematicians and researchers.
Publisher: Springer Science & Business Media
ISBN: 0817683631
Category : Mathematics
Languages : en
Pages : 289
Book Description
Configurations can be studied from a graph-theoretical viewpoint via the so-called Levi graphs and lie at the heart of graphs, groups, surfaces, and geometries, all of which are very active areas of mathematical exploration. In this self-contained textbook, algebraic graph theory is used to introduce groups; topological graph theory is used to explore surfaces; and geometric graph theory is implemented to analyze incidence geometries. After a preview of configurations in Chapter 1, a concise introduction to graph theory is presented in Chapter 2, followed by a geometric introduction to groups in Chapter 3. Maps and surfaces are combinatorially treated in Chapter 4. Chapter 5 introduces the concept of incidence structure through vertex colored graphs, and the combinatorial aspects of classical configurations are studied. Geometric aspects, some historical remarks, references, and applications of classical configurations appear in the last chapter. With over two hundred illustrations, challenging exercises at the end of each chapter, a comprehensive bibliography, and a set of open problems, Configurations from a Graphical Viewpoint is well suited for a graduate graph theory course, an advanced undergraduate seminar, or a self-contained reference for mathematicians and researchers.
$(16,6)$ Configurations and Geometry of Kummer Surfaces in ${\mathbb P}^3$
Author: Maria del Rosario Gonzalez-Dorrego
Publisher: American Mathematical Soc.
ISBN: 0821825747
Category : Mathematics
Languages : en
Pages : 114
Book Description
The philosophy of the first part of this work is to understand (and classify) Kummer surfaces by studying (16, 6) configurations. Chapter 1 is devoted to classifying (16, 6) configurations and studying their manifold symmetries and the underlying questions about finite subgroups of [italic capitals]PGL4([italic]k). In chapter 2 we use this information to give a complete classification of Kummer surfaces together with explicit equations and the explicit description of their singularities.
Publisher: American Mathematical Soc.
ISBN: 0821825747
Category : Mathematics
Languages : en
Pages : 114
Book Description
The philosophy of the first part of this work is to understand (and classify) Kummer surfaces by studying (16, 6) configurations. Chapter 1 is devoted to classifying (16, 6) configurations and studying their manifold symmetries and the underlying questions about finite subgroups of [italic capitals]PGL4([italic]k). In chapter 2 we use this information to give a complete classification of Kummer surfaces together with explicit equations and the explicit description of their singularities.
The Coxeter Legacy
Author: Harold Scott Macdonald Coxeter
Publisher: American Mathematical Soc.
ISBN: 9780821887608
Category : Mathematics
Languages : en
Pages : 344
Book Description
This collection of essays on the legacy of mathematican Donald Coxeter is a mixture of surveys, updates, history, storytelling and personal memories covering both applied and abstract maths. Subjects include: polytopes, Coxeter groups, equivelar polyhedra, Ceva's theorum, and Coxeter and the artists.
Publisher: American Mathematical Soc.
ISBN: 9780821887608
Category : Mathematics
Languages : en
Pages : 344
Book Description
This collection of essays on the legacy of mathematican Donald Coxeter is a mixture of surveys, updates, history, storytelling and personal memories covering both applied and abstract maths. Subjects include: polytopes, Coxeter groups, equivelar polyhedra, Ceva's theorum, and Coxeter and the artists.
Pencils of Cubics and Algebraic Curves in the Real Projective Plane
Author: Séverine Fiedler - Le Touzé
Publisher: CRC Press
ISBN: 0429838255
Category : Mathematics
Languages : en
Pages : 226
Book Description
Pencils of Cubics and Algebraic Curves in the Real Projective Plane thoroughly examines the combinatorial configurations of n generic points in RP2. Especially how it is the data describing the mutual position of each point with respect to lines and conics passing through others. The first section in this book answers questions such as, can one count the combinatorial configurations up to the action of the symmetric group? How are they pairwise connected via almost generic configurations? These questions are addressed using rational cubics and pencils of cubics for n = 6 and 7. The book’s second section deals with configurations of eight points in the convex position. Both the combinatorial configurations and combinatorial pencils are classified up to the action of the dihedral group D8. Finally, the third section contains plentiful applications and results around Hilbert’s sixteenth problem. The author meticulously wrote this book based upon years of research devoted to the topic. The book is particularly useful for researchers and graduate students interested in topology, algebraic geometry and combinatorics. Features: Examines how the shape of pencils depends on the corresponding configurations of points Includes topology of real algebraic curves Contains numerous applications and results around Hilbert’s sixteenth problem About the Author: Séverine Fiedler-le Touzé has published several papers on this topic and has been invited to present at many conferences. She holds a Ph.D. from University Rennes1 and was a post-doc at the Mathematical Sciences Research Institute in Berkeley, California.
Publisher: CRC Press
ISBN: 0429838255
Category : Mathematics
Languages : en
Pages : 226
Book Description
Pencils of Cubics and Algebraic Curves in the Real Projective Plane thoroughly examines the combinatorial configurations of n generic points in RP2. Especially how it is the data describing the mutual position of each point with respect to lines and conics passing through others. The first section in this book answers questions such as, can one count the combinatorial configurations up to the action of the symmetric group? How are they pairwise connected via almost generic configurations? These questions are addressed using rational cubics and pencils of cubics for n = 6 and 7. The book’s second section deals with configurations of eight points in the convex position. Both the combinatorial configurations and combinatorial pencils are classified up to the action of the dihedral group D8. Finally, the third section contains plentiful applications and results around Hilbert’s sixteenth problem. The author meticulously wrote this book based upon years of research devoted to the topic. The book is particularly useful for researchers and graduate students interested in topology, algebraic geometry and combinatorics. Features: Examines how the shape of pencils depends on the corresponding configurations of points Includes topology of real algebraic curves Contains numerous applications and results around Hilbert’s sixteenth problem About the Author: Séverine Fiedler-le Touzé has published several papers on this topic and has been invited to present at many conferences. She holds a Ph.D. from University Rennes1 and was a post-doc at the Mathematical Sciences Research Institute in Berkeley, California.