Computer Solution of Large Linear Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Computer Solution of Large Linear Systems PDF full book. Access full book title Computer Solution of Large Linear Systems by Gerard Meurant. Download full books in PDF and EPUB format.

Computer Solution of Large Linear Systems

Computer Solution of Large Linear Systems PDF Author: Gerard Meurant
Publisher: Elsevier
ISBN: 0080529518
Category : Mathematics
Languages : en
Pages : 777

Book Description
This book deals with numerical methods for solving large sparse linear systems of equations, particularly those arising from the discretization of partial differential equations. It covers both direct and iterative methods. Direct methods which are considered are variants of Gaussian elimination and fast solvers for separable partial differential equations in rectangular domains. The book reviews the classical iterative methods like Jacobi, Gauss-Seidel and alternating directions algorithms. A particular emphasis is put on the conjugate gradient as well as conjugate gradient -like methods for non symmetric problems. Most efficient preconditioners used to speed up convergence are studied. A chapter is devoted to the multigrid method and the book ends with domain decomposition algorithms that are well suited for solving linear systems on parallel computers.

Computer Solution of Large Linear Systems

Computer Solution of Large Linear Systems PDF Author: Gerard Meurant
Publisher: Elsevier
ISBN: 0080529518
Category : Mathematics
Languages : en
Pages : 777

Book Description
This book deals with numerical methods for solving large sparse linear systems of equations, particularly those arising from the discretization of partial differential equations. It covers both direct and iterative methods. Direct methods which are considered are variants of Gaussian elimination and fast solvers for separable partial differential equations in rectangular domains. The book reviews the classical iterative methods like Jacobi, Gauss-Seidel and alternating directions algorithms. A particular emphasis is put on the conjugate gradient as well as conjugate gradient -like methods for non symmetric problems. Most efficient preconditioners used to speed up convergence are studied. A chapter is devoted to the multigrid method and the book ends with domain decomposition algorithms that are well suited for solving linear systems on parallel computers.

Computer solution of large linear systems

Computer solution of large linear systems PDF Author: GĂ©rard A. Meurant
Publisher:
ISBN:
Category :
Languages : en
Pages : 753

Book Description


Computer Solution of Large Sparse Positive Definite Systems

Computer Solution of Large Sparse Positive Definite Systems PDF Author: Alan George
Publisher: Prentice Hall
ISBN:
Category : Mathematics
Languages : en
Pages : 346

Book Description


Iterative Solution of Large Linear Systems

Iterative Solution of Large Linear Systems PDF Author: David M. Young
Publisher: Elsevier
ISBN: 1483274136
Category : Mathematics
Languages : en
Pages : 599

Book Description
Iterative Solution of Large Linear Systems describes the systematic development of a substantial portion of the theory of iterative methods for solving large linear systems, with emphasis on practical techniques. The focal point of the book is an analysis of the convergence properties of the successive overrelaxation (SOR) method as applied to a linear system where the matrix is "consistently ordered". Comprised of 18 chapters, this volume begins by showing how the solution of a certain partial differential equation by finite difference methods leads to a large linear system with a sparse matrix. The next chapter reviews matrix theory and the properties of matrices, as well as several theorems of matrix theory without proof. A number of iterative methods, including the SOR method, are then considered. Convergence theorems are also given for various iterative methods under certain assumptions on the matrix A of the system. Subsequent chapters deal with the eigenvalues of the SOR method for consistently ordered matrices; the optimum relaxation factor; nonstationary linear iterative methods; and semi-iterative methods. This book will be of interest to students and practitioners in the fields of computer science and applied mathematics.

Iterative Methods for Sparse Linear Systems

Iterative Methods for Sparse Linear Systems PDF Author: Yousef Saad
Publisher: SIAM
ISBN: 0898715342
Category : Mathematics
Languages : en
Pages : 537

Book Description
Mathematics of Computing -- General.

Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications

Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications PDF Author: Daniele Bertaccini
Publisher: CRC Press
ISBN: 1498764177
Category : Mathematics
Languages : en
Pages : 375

Book Description
This book describes, in a basic way, the most useful and effective iterative solvers and appropriate preconditioning techniques for some of the most important classes of large and sparse linear systems. The solution of large and sparse linear systems is the most time-consuming part for most of the scientific computing simulations. Indeed, mathematical models become more and more accurate by including a greater volume of data, but this requires the solution of larger and harder algebraic systems. In recent years, research has focused on the efficient solution of large sparse and/or structured systems generated by the discretization of numerical models by using iterative solvers.

Parallel Complexity Of Linear System Solution

Parallel Complexity Of Linear System Solution PDF Author: Bruno Codenotti
Publisher: World Scientific
ISBN: 9814506478
Category : Computers
Languages : en
Pages : 232

Book Description
This book presents the most important parallel algorithms for the solution of linear systems. Despite the evolution and significance of the field of parallel solution of linear systems, no book is completely dedicated to the subject. People interested in the themes covered by this book belong to two different groups: numerical linear algebra and theoretical computer science, and this is the first effort to produce a useful tool for both. The book is organized as follows: after introducing the general features of parallel algorithms and the most important models of parallel computation, the authors analyze the complexity of solving linear systems in the circuit, PRAM, distributed, and VLSI models. The approach covers both the general case (i.e. dense linear systems without structure) and many important special cases (i.e. banded, sparse, Toeplitz, circulant linear systems).

Computer Solution of Linear Algebraic Systems

Computer Solution of Linear Algebraic Systems PDF Author: George Elmer Forsythe
Publisher:
ISBN:
Category : Matrices
Languages : en
Pages : 170

Book Description


Introduction to Parallel and Vector Solution of Linear Systems

Introduction to Parallel and Vector Solution of Linear Systems PDF Author: James M. Ortega
Publisher: Springer Science & Business Media
ISBN: 9780306428623
Category : Computers
Languages : en
Pages : 330

Book Description
Although the origins of parallel computing go back to the last century, it was only in the 1970s that parallel and vector computers became available to the scientific community. The first of these machines-the 64 processor llliac IV and the vector computers built by Texas Instruments, Control Data Corporation, and then CRA Y Research Corporation-had a somewhat limited impact. They were few in number and available mostly to workers in a few government laboratories. By now, however, the trickle has become a flood. There are over 200 large-scale vector computers now installed, not only in government laboratories but also in universities and in an increasing diversity of industries. Moreover, the National Science Foundation's Super computing Centers have made large vector computers widely available to the academic community. In addition, smaller, very cost-effective vector computers are being manufactured by a number of companies. Parallelism in computers has also progressed rapidly. The largest super computers now consist of several vector processors working in parallel. Although the number of processors in such machines is still relatively small (up to 8), it is expected that an increasing number of processors will be added in the near future (to a total of 16 or 32). Moreover, there are a myriad of research projects to build machines with hundreds, thousands, or even more processors. Indeed, several companies are now selling parallel machines, some with as many as hundreds, or even tens of thousands, of processors.

Introduction to Parallel and Vector Solution of Linear Systems

Introduction to Parallel and Vector Solution of Linear Systems PDF Author: James M. Ortega
Publisher: Springer Science & Business Media
ISBN: 1489921125
Category : Computers
Languages : en
Pages : 309

Book Description
Although the origins of parallel computing go back to the last century, it was only in the 1970s that parallel and vector computers became available to the scientific community. The first of these machines-the 64 processor llliac IV and the vector computers built by Texas Instruments, Control Data Corporation, and then CRA Y Research Corporation-had a somewhat limited impact. They were few in number and available mostly to workers in a few government laboratories. By now, however, the trickle has become a flood. There are over 200 large-scale vector computers now installed, not only in government laboratories but also in universities and in an increasing diversity of industries. Moreover, the National Science Foundation's Super computing Centers have made large vector computers widely available to the academic community. In addition, smaller, very cost-effective vector computers are being manufactured by a number of companies. Parallelism in computers has also progressed rapidly. The largest super computers now consist of several vector processors working in parallel. Although the number of processors in such machines is still relatively small (up to 8), it is expected that an increasing number of processors will be added in the near future (to a total of 16 or 32). Moreover, there are a myriad of research projects to build machines with hundreds, thousands, or even more processors. Indeed, several companies are now selling parallel machines, some with as many as hundreds, or even tens of thousands, of processors.