Author: Daniel Okoh
Publisher: Createspace Independent Publishing Platform
ISBN: 9781539360957
Category :
Languages : en
Pages : 54
Book Description
Computer neural networks are a branch of artificial intelligence, inspired to behave in a manner similar to the human brain; they are trained and they learn from their training. Computer neural networks have a wide variety of applications, mostly hinged around modelling, forecasting, and general predictions. This book illustrates how to use computer neural networks on MATLAB in very simple and elegant manner. The language of the book is elementary as it is meant for beginners, readers are notassumed to have previous skills on the subject. Projects, in varying degrees, have been used to make sure that readers get a practical and hands-on experience on the subject. The book is meant for you if you want to get a quick start with the practical use of computer neural networks on MATLAB without the boredom associated with a lengthy theoretical write-up.
Computer Neural Networks on MATLAB
Author: Daniel Okoh
Publisher: Createspace Independent Publishing Platform
ISBN: 9781539360957
Category :
Languages : en
Pages : 54
Book Description
Computer neural networks are a branch of artificial intelligence, inspired to behave in a manner similar to the human brain; they are trained and they learn from their training. Computer neural networks have a wide variety of applications, mostly hinged around modelling, forecasting, and general predictions. This book illustrates how to use computer neural networks on MATLAB in very simple and elegant manner. The language of the book is elementary as it is meant for beginners, readers are notassumed to have previous skills on the subject. Projects, in varying degrees, have been used to make sure that readers get a practical and hands-on experience on the subject. The book is meant for you if you want to get a quick start with the practical use of computer neural networks on MATLAB without the boredom associated with a lengthy theoretical write-up.
Publisher: Createspace Independent Publishing Platform
ISBN: 9781539360957
Category :
Languages : en
Pages : 54
Book Description
Computer neural networks are a branch of artificial intelligence, inspired to behave in a manner similar to the human brain; they are trained and they learn from their training. Computer neural networks have a wide variety of applications, mostly hinged around modelling, forecasting, and general predictions. This book illustrates how to use computer neural networks on MATLAB in very simple and elegant manner. The language of the book is elementary as it is meant for beginners, readers are notassumed to have previous skills on the subject. Projects, in varying degrees, have been used to make sure that readers get a practical and hands-on experience on the subject. The book is meant for you if you want to get a quick start with the practical use of computer neural networks on MATLAB without the boredom associated with a lengthy theoretical write-up.
Introduction to Neural Networks Using Matlab 6.0
Author: S. N. Sivanandam
Publisher: Tata McGraw-Hill Education
ISBN: 9780070591127
Category : MATLAB.
Languages : en
Pages : 0
Book Description
Publisher: Tata McGraw-Hill Education
ISBN: 9780070591127
Category : MATLAB.
Languages : en
Pages : 0
Book Description
MATLAB Deep Learning
Author: Phil Kim
Publisher: Apress
ISBN: 1484228456
Category : Computers
Languages : en
Pages : 162
Book Description
Get started with MATLAB for deep learning and AI with this in-depth primer. In this book, you start with machine learning fundamentals, then move on to neural networks, deep learning, and then convolutional neural networks. In a blend of fundamentals and applications, MATLAB Deep Learning employs MATLAB as the underlying programming language and tool for the examples and case studies in this book. With this book, you'll be able to tackle some of today's real world big data, smart bots, and other complex data problems. You’ll see how deep learning is a complex and more intelligent aspect of machine learning for modern smart data analysis and usage. What You'll Learn Use MATLAB for deep learning Discover neural networks and multi-layer neural networks Work with convolution and pooling layers Build a MNIST example with these layers Who This Book Is For Those who want to learn deep learning using MATLAB. Some MATLAB experience may be useful.
Publisher: Apress
ISBN: 1484228456
Category : Computers
Languages : en
Pages : 162
Book Description
Get started with MATLAB for deep learning and AI with this in-depth primer. In this book, you start with machine learning fundamentals, then move on to neural networks, deep learning, and then convolutional neural networks. In a blend of fundamentals and applications, MATLAB Deep Learning employs MATLAB as the underlying programming language and tool for the examples and case studies in this book. With this book, you'll be able to tackle some of today's real world big data, smart bots, and other complex data problems. You’ll see how deep learning is a complex and more intelligent aspect of machine learning for modern smart data analysis and usage. What You'll Learn Use MATLAB for deep learning Discover neural networks and multi-layer neural networks Work with convolution and pooling layers Build a MNIST example with these layers Who This Book Is For Those who want to learn deep learning using MATLAB. Some MATLAB experience may be useful.
Computational Methods for Deep Learning
Author: Wei Qi Yan
Publisher: Springer Nature
ISBN: 3030610810
Category : Computers
Languages : en
Pages : 134
Book Description
Integrating concepts from deep learning, machine learning, and artificial neural networks, this highly unique textbook presents content progressively from easy to more complex, orienting its content about knowledge transfer from the viewpoint of machine intelligence. It adopts the methodology from graphical theory, mathematical models, and algorithmic implementation, as well as covers datasets preparation, programming, results analysis and evaluations. Beginning with a grounding about artificial neural networks with neurons and the activation functions, the work then explains the mechanism of deep learning using advanced mathematics. In particular, it emphasizes how to use TensorFlow and the latest MATLAB deep-learning toolboxes for implementing deep learning algorithms. As a prerequisite, readers should have a solid understanding especially of mathematical analysis, linear algebra, numerical analysis, optimizations, differential geometry, manifold, and information theory, as well as basic algebra, functional analysis, and graphical models. This computational knowledge will assist in comprehending the subject matter not only of this text/reference, but also in relevant deep learning journal articles and conference papers. This textbook/guide is aimed at Computer Science research students and engineers, as well as scientists interested in deep learning for theoretic research and analysis. More generally, this book is also helpful for those researchers who are interested in machine intelligence, pattern analysis, natural language processing, and machine vision. Dr. Wei Qi Yan is an Associate Professor in the Department of Computer Science at Auckland University of Technology, New Zealand. His other publications include the Springer title, Visual Cryptography for Image Processing and Security.
Publisher: Springer Nature
ISBN: 3030610810
Category : Computers
Languages : en
Pages : 134
Book Description
Integrating concepts from deep learning, machine learning, and artificial neural networks, this highly unique textbook presents content progressively from easy to more complex, orienting its content about knowledge transfer from the viewpoint of machine intelligence. It adopts the methodology from graphical theory, mathematical models, and algorithmic implementation, as well as covers datasets preparation, programming, results analysis and evaluations. Beginning with a grounding about artificial neural networks with neurons and the activation functions, the work then explains the mechanism of deep learning using advanced mathematics. In particular, it emphasizes how to use TensorFlow and the latest MATLAB deep-learning toolboxes for implementing deep learning algorithms. As a prerequisite, readers should have a solid understanding especially of mathematical analysis, linear algebra, numerical analysis, optimizations, differential geometry, manifold, and information theory, as well as basic algebra, functional analysis, and graphical models. This computational knowledge will assist in comprehending the subject matter not only of this text/reference, but also in relevant deep learning journal articles and conference papers. This textbook/guide is aimed at Computer Science research students and engineers, as well as scientists interested in deep learning for theoretic research and analysis. More generally, this book is also helpful for those researchers who are interested in machine intelligence, pattern analysis, natural language processing, and machine vision. Dr. Wei Qi Yan is an Associate Professor in the Department of Computer Science at Auckland University of Technology, New Zealand. His other publications include the Springer title, Visual Cryptography for Image Processing and Security.
Manual for the implementation of neural networks in MATLAB
Author: Michael Kuhn
Publisher: GRIN Verlag
ISBN: 3638445518
Category : Business & Economics
Languages : en
Pages : 45
Book Description
Bachelor Thesis from the year 2005 in the subject Business economics - Information Management, grade: 2,0, Neisse University Görlitz (Neisse University), language: English, abstract: This bachelor thesis presents a manual about the implementation of neural networks in the software environment MATLAB. The thesis can be divided into four parts. After an introduction into the thesis, the theoretical background of neural networks and MATLAB is explained in two chapters. The third part is the description how to implement networks in a general way and with examples, too. The manual is created for the “Master Course of Computer Studies” at the University of Applied Science Zittau/Görlitz. Due to the fact, that this manual is a bachelor thesis just a small theoretical and practical overview about neural networks can be given.
Publisher: GRIN Verlag
ISBN: 3638445518
Category : Business & Economics
Languages : en
Pages : 45
Book Description
Bachelor Thesis from the year 2005 in the subject Business economics - Information Management, grade: 2,0, Neisse University Görlitz (Neisse University), language: English, abstract: This bachelor thesis presents a manual about the implementation of neural networks in the software environment MATLAB. The thesis can be divided into four parts. After an introduction into the thesis, the theoretical background of neural networks and MATLAB is explained in two chapters. The third part is the description how to implement networks in a general way and with examples, too. The manual is created for the “Master Course of Computer Studies” at the University of Applied Science Zittau/Görlitz. Due to the fact, that this manual is a bachelor thesis just a small theoretical and practical overview about neural networks can be given.
MATLAB for Machine Learning
Author: Giuseppe Ciaburro
Publisher: Packt Publishing Ltd
ISBN: 1788399390
Category : Computers
Languages : en
Pages : 374
Book Description
Extract patterns and knowledge from your data in easy way using MATLAB About This Book Get your first steps into machine learning with the help of this easy-to-follow guide Learn regression, clustering, classification, predictive analytics, artificial neural networks and more with MATLAB Understand how your data works and identify hidden layers in the data with the power of machine learning. Who This Book Is For This book is for data analysts, data scientists, students, or anyone who is looking to get started with machine learning and want to build efficient data processing and predicting applications. A mathematical and statistical background will really help in following this book well. What You Will Learn Learn the introductory concepts of machine learning. Discover different ways to transform data using SAS XPORT, import and export tools, Explore the different types of regression techniques such as simple & multiple linear regression, ordinary least squares estimation, correlations and how to apply them to your data. Discover the basics of classification methods and how to implement Naive Bayes algorithm and Decision Trees in the Matlab environment. Uncover how to use clustering methods like hierarchical clustering to grouping data using the similarity measures. Know how to perform data fitting, pattern recognition, and clustering analysis with the help of MATLAB Neural Network Toolbox. Learn feature selection and extraction for dimensionality reduction leading to improved performance. In Detail MATLAB is the language of choice for many researchers and mathematics experts for machine learning. This book will help you build a foundation in machine learning using MATLAB for beginners. You'll start by getting your system ready with t he MATLAB environment for machine learning and you'll see how to easily interact with the Matlab workspace. We'll then move on to data cleansing, mining and analyzing various data types in machine learning and you'll see how to display data values on a plot. Next, you'll get to know about the different types of regression techniques and how to apply them to your data using the MATLAB functions. You'll understand the basic concepts of neural networks and perform data fitting, pattern recognition, and clustering analysis. Finally, you'll explore feature selection and extraction techniques for dimensionality reduction for performance improvement. At the end of the book, you will learn to put it all together into real-world cases covering major machine learning algorithms and be comfortable in performing machine learning with MATLAB. Style and approach The book takes a very comprehensive approach to enhance your understanding of machine learning using MATLAB. Sufficient real-world examples and use cases are included in the book to help you grasp the concepts quickly and apply them easily in your day-to-day work.
Publisher: Packt Publishing Ltd
ISBN: 1788399390
Category : Computers
Languages : en
Pages : 374
Book Description
Extract patterns and knowledge from your data in easy way using MATLAB About This Book Get your first steps into machine learning with the help of this easy-to-follow guide Learn regression, clustering, classification, predictive analytics, artificial neural networks and more with MATLAB Understand how your data works and identify hidden layers in the data with the power of machine learning. Who This Book Is For This book is for data analysts, data scientists, students, or anyone who is looking to get started with machine learning and want to build efficient data processing and predicting applications. A mathematical and statistical background will really help in following this book well. What You Will Learn Learn the introductory concepts of machine learning. Discover different ways to transform data using SAS XPORT, import and export tools, Explore the different types of regression techniques such as simple & multiple linear regression, ordinary least squares estimation, correlations and how to apply them to your data. Discover the basics of classification methods and how to implement Naive Bayes algorithm and Decision Trees in the Matlab environment. Uncover how to use clustering methods like hierarchical clustering to grouping data using the similarity measures. Know how to perform data fitting, pattern recognition, and clustering analysis with the help of MATLAB Neural Network Toolbox. Learn feature selection and extraction for dimensionality reduction leading to improved performance. In Detail MATLAB is the language of choice for many researchers and mathematics experts for machine learning. This book will help you build a foundation in machine learning using MATLAB for beginners. You'll start by getting your system ready with t he MATLAB environment for machine learning and you'll see how to easily interact with the Matlab workspace. We'll then move on to data cleansing, mining and analyzing various data types in machine learning and you'll see how to display data values on a plot. Next, you'll get to know about the different types of regression techniques and how to apply them to your data using the MATLAB functions. You'll understand the basic concepts of neural networks and perform data fitting, pattern recognition, and clustering analysis. Finally, you'll explore feature selection and extraction techniques for dimensionality reduction for performance improvement. At the end of the book, you will learn to put it all together into real-world cases covering major machine learning algorithms and be comfortable in performing machine learning with MATLAB. Style and approach The book takes a very comprehensive approach to enhance your understanding of machine learning using MATLAB. Sufficient real-world examples and use cases are included in the book to help you grasp the concepts quickly and apply them easily in your day-to-day work.
Dynamical Systems with Applications using MATLAB®
Author: Stephen Lynch
Publisher: Springer
ISBN: 3319068202
Category : Mathematics
Languages : en
Pages : 519
Book Description
This textbook, now in its second edition, provides a broad introduction to both continuous and discrete dynamical systems, the theory of which is motivated by examples from a wide range of disciplines. It emphasizes applications and simulation utilizing MATLAB®, Simulink®, the Image Processing Toolbox® and the Symbolic Math toolbox®, including MuPAD. Features new to the second edition include · sections on series solutions of ordinary differential equations, perturbation methods, normal forms, Gröbner bases, and chaos synchronization; · chapters on image processing and binary oscillator computing; · hundreds of new illustrations, examples, and exercises with solutions; and · over eighty up-to-date MATLAB program files and Simulink model files available online. These files were voted MATLAB Central Pick of the Week in July 2013. The hands-on approach of Dynamical Systems with Applications using MATLAB, Second Edition, has minimal prerequisites, only requiring familiarity with ordinary differential equations. It will appeal to advanced undergraduate and graduate students, applied mathematicians, engineers, and researchers in a broad range of disciplines such as population dynamics, biology, chemistry, computing, economics, nonlinear optics, neural networks, and physics. Praise for the first edition Summing up, it can be said that this text allows the reader to have an easy and quick start to the huge field of dynamical systems theory. MATLAB/SIMULINK facilitate this approach under the aspect of learning by doing. —OR News/Operations Research Spectrum The MATLAB programs are kept as simple as possible and the author's experience has shown that this method of teaching using MATLAB works well with computer laboratory classes of small sizes.... I recommend ‘Dynamical Systems with Applications using MATLAB’ as a good handbook for a diverse readership: graduates and professionals in mathematics, physics, science and engineering. —Mathematica
Publisher: Springer
ISBN: 3319068202
Category : Mathematics
Languages : en
Pages : 519
Book Description
This textbook, now in its second edition, provides a broad introduction to both continuous and discrete dynamical systems, the theory of which is motivated by examples from a wide range of disciplines. It emphasizes applications and simulation utilizing MATLAB®, Simulink®, the Image Processing Toolbox® and the Symbolic Math toolbox®, including MuPAD. Features new to the second edition include · sections on series solutions of ordinary differential equations, perturbation methods, normal forms, Gröbner bases, and chaos synchronization; · chapters on image processing and binary oscillator computing; · hundreds of new illustrations, examples, and exercises with solutions; and · over eighty up-to-date MATLAB program files and Simulink model files available online. These files were voted MATLAB Central Pick of the Week in July 2013. The hands-on approach of Dynamical Systems with Applications using MATLAB, Second Edition, has minimal prerequisites, only requiring familiarity with ordinary differential equations. It will appeal to advanced undergraduate and graduate students, applied mathematicians, engineers, and researchers in a broad range of disciplines such as population dynamics, biology, chemistry, computing, economics, nonlinear optics, neural networks, and physics. Praise for the first edition Summing up, it can be said that this text allows the reader to have an easy and quick start to the huge field of dynamical systems theory. MATLAB/SIMULINK facilitate this approach under the aspect of learning by doing. —OR News/Operations Research Spectrum The MATLAB programs are kept as simple as possible and the author's experience has shown that this method of teaching using MATLAB works well with computer laboratory classes of small sizes.... I recommend ‘Dynamical Systems with Applications using MATLAB’ as a good handbook for a diverse readership: graduates and professionals in mathematics, physics, science and engineering. —Mathematica
MATLAB Machine Learning
Author: Michael Paluszek
Publisher: Apress
ISBN: 1484222504
Category : Computers
Languages : en
Pages : 335
Book Description
This book is a comprehensive guide to machine learning with worked examples in MATLAB. It starts with an overview of the history of Artificial Intelligence and automatic control and how the field of machine learning grew from these. It provides descriptions of all major areas in machine learning. The book reviews commercially available packages for machine learning and shows how they fit into the field. The book then shows how MATLAB can be used to solve machine learning problems and how MATLAB graphics can enhance the programmer’s understanding of the results and help users of their software grasp the results. Machine Learning can be very mathematical. The mathematics for each area is introduced in a clear and concise form so that even casual readers can understand the math. Readers from all areas of engineering will see connections to what they know and will learn new technology. The book then provides complete solutions in MATLAB for several important problems in machine learning including face identification, autonomous driving, and data classification. Full source code is provided for all of the examples and applications in the book. What you'll learn: An overview of the field of machine learning Commercial and open source packages in MATLAB How to use MATLAB for programming and building machine learning applications MATLAB graphics for machine learning Practical real world examples in MATLAB for major applications of machine learning in big data Who is this book for: The primary audiences are engineers and engineering students wanting a comprehensive and practical introduction to machine learning.
Publisher: Apress
ISBN: 1484222504
Category : Computers
Languages : en
Pages : 335
Book Description
This book is a comprehensive guide to machine learning with worked examples in MATLAB. It starts with an overview of the history of Artificial Intelligence and automatic control and how the field of machine learning grew from these. It provides descriptions of all major areas in machine learning. The book reviews commercially available packages for machine learning and shows how they fit into the field. The book then shows how MATLAB can be used to solve machine learning problems and how MATLAB graphics can enhance the programmer’s understanding of the results and help users of their software grasp the results. Machine Learning can be very mathematical. The mathematics for each area is introduced in a clear and concise form so that even casual readers can understand the math. Readers from all areas of engineering will see connections to what they know and will learn new technology. The book then provides complete solutions in MATLAB for several important problems in machine learning including face identification, autonomous driving, and data classification. Full source code is provided for all of the examples and applications in the book. What you'll learn: An overview of the field of machine learning Commercial and open source packages in MATLAB How to use MATLAB for programming and building machine learning applications MATLAB graphics for machine learning Practical real world examples in MATLAB for major applications of machine learning in big data Who is this book for: The primary audiences are engineers and engineering students wanting a comprehensive and practical introduction to machine learning.
GPU Programming in MATLAB
Author: Nikolaos Ploskas
Publisher: Morgan Kaufmann
ISBN: 0128051337
Category : Computers
Languages : en
Pages : 320
Book Description
GPU programming in MATLAB is intended for scientists, engineers, or students who develop or maintain applications in MATLAB and would like to accelerate their codes using GPU programming without losing the many benefits of MATLAB. The book starts with coverage of the Parallel Computing Toolbox and other MATLAB toolboxes for GPU computing, which allow applications to be ported straightforwardly onto GPUs without extensive knowledge of GPU programming. The next part covers built-in, GPU-enabled features of MATLAB, including options to leverage GPUs across multicore or different computer systems. Finally, advanced material includes CUDA code in MATLAB and optimizing existing GPU applications. Throughout the book, examples and source codes illustrate every concept so that readers can immediately apply them to their own development. - Provides in-depth, comprehensive coverage of GPUs with MATLAB, including the parallel computing toolbox and built-in features for other MATLAB toolboxes - Explains how to accelerate computationally heavy applications in MATLAB without the need to re-write them in another language - Presents case studies illustrating key concepts across multiple fields - Includes source code, sample datasets, and lecture slides
Publisher: Morgan Kaufmann
ISBN: 0128051337
Category : Computers
Languages : en
Pages : 320
Book Description
GPU programming in MATLAB is intended for scientists, engineers, or students who develop or maintain applications in MATLAB and would like to accelerate their codes using GPU programming without losing the many benefits of MATLAB. The book starts with coverage of the Parallel Computing Toolbox and other MATLAB toolboxes for GPU computing, which allow applications to be ported straightforwardly onto GPUs without extensive knowledge of GPU programming. The next part covers built-in, GPU-enabled features of MATLAB, including options to leverage GPUs across multicore or different computer systems. Finally, advanced material includes CUDA code in MATLAB and optimizing existing GPU applications. Throughout the book, examples and source codes illustrate every concept so that readers can immediately apply them to their own development. - Provides in-depth, comprehensive coverage of GPUs with MATLAB, including the parallel computing toolbox and built-in features for other MATLAB toolboxes - Explains how to accelerate computationally heavy applications in MATLAB without the need to re-write them in another language - Presents case studies illustrating key concepts across multiple fields - Includes source code, sample datasets, and lecture slides
The Perceptron
Author: Frank Rosenblatt
Publisher:
ISBN:
Category : Artificial intelligence
Languages : en
Pages : 290
Book Description
Publisher:
ISBN:
Category : Artificial intelligence
Languages : en
Pages : 290
Book Description