Computational Neuroscience: Cortical Dynamics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Computational Neuroscience: Cortical Dynamics PDF full book. Access full book title Computational Neuroscience: Cortical Dynamics by Péter Érdi. Download full books in PDF and EPUB format.

Computational Neuroscience: Cortical Dynamics

Computational Neuroscience: Cortical Dynamics PDF Author: Péter Érdi
Publisher: Springer Science & Business Media
ISBN: 3540225668
Category : Computers
Languages : en
Pages : 169

Book Description
This book presents thoroughly revised tutorial papers based on lectures given by leading researchers at the 8th International Summer School on Neural Networks in Erice, Italy, in October/November 2003. The eight tutorial papers presented provide competent coverage of the field of cortical dynamics, consolidating recent theoretical and experimental results on the processing, transmission, and imprinting of information in the brain as well as on important functions of the cortical area, such as cortical rhythms, cortical neural plasticity, and their structural basis and functional significance. The book is divided in two topical sections on fundamentals of cortical dynamics and mathematical models of cortical dynamics.

Computational Neuroscience: Cortical Dynamics

Computational Neuroscience: Cortical Dynamics PDF Author: Péter Érdi
Publisher: Springer Science & Business Media
ISBN: 3540225668
Category : Computers
Languages : en
Pages : 169

Book Description
This book presents thoroughly revised tutorial papers based on lectures given by leading researchers at the 8th International Summer School on Neural Networks in Erice, Italy, in October/November 2003. The eight tutorial papers presented provide competent coverage of the field of cortical dynamics, consolidating recent theoretical and experimental results on the processing, transmission, and imprinting of information in the brain as well as on important functions of the cortical area, such as cortical rhythms, cortical neural plasticity, and their structural basis and functional significance. The book is divided in two topical sections on fundamentals of cortical dynamics and mathematical models of cortical dynamics.

Computational Neuroscience: Cortical Dynamics

Computational Neuroscience: Cortical Dynamics PDF Author: Peter Erdi
Publisher: Springer
ISBN: 3540278621
Category : Medical
Languages : en
Pages : 169

Book Description
This book presents thoroughly revised tutorial papers based on lectures given by leading researchers at the 8th International Summer School on Neural Networks in Erice, Italy, in October/November 2003. The eight tutorial papers presented provide competent coverage of the field of cortical dynamics, consolidating recent theoretical and experimental results on the processing, transmission, and imprinting of information in the brain as well as on important functions of the cortical area, such as cortical rhythms, cortical neural plasticity, and their structural basis and functional significance. The book is divided in two topical sections on fundamentals of cortical dynamics and mathematical models of cortical dynamics.

Neuronal Dynamics

Neuronal Dynamics PDF Author: Wulfram Gerstner
Publisher: Cambridge University Press
ISBN: 1107060834
Category : Computers
Languages : en
Pages : 591

Book Description
This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.

Computational Neuroscience

Computational Neuroscience PDF Author: Eric L. Schwartz
Publisher: MIT Press
ISBN: 9780262691642
Category : Computers
Languages : en
Pages : 468

Book Description
The thirty original contributions in this book provide a working definition of"computational neuroscience" as the area in which problems lie simultaneously within computerscience and neuroscience. They review this emerging field in historical and philosophical overviewsand in stimulating summaries of recent results. Leading researchers address the structure of thebrain and the computational problems associated with describing and understanding this structure atthe synaptic, neural, map, and system levels.The overview chapters discuss the early days of thefield, provide a philosophical analysis of the problems associated with confusion between brainmetaphor and brain theory, and take up the scope and structure of computationalneuroscience.Synaptic-level structure is addressed in chapters that relate the properties ofdendritic branches, spines, and synapses to the biophysics of computation and provide a connectionbetween real neuron architectures and neural network simulations.The network-level chapters take upthe preattentive perception of 3-D forms, oscillation in neural networks, the neurobiologicalsignificance of new learning models, and the analysis of neural assemblies and local learningrides.Map-level structure is explored in chapters on the bat echolocation system, cat orientationmaps, primate stereo vision cortical cognitive maps, dynamic remapping in primate visual cortex, andcomputer-aided reconstruction of topographic and columnar maps in primates.The system-level chaptersfocus on the oculomotor system VLSI models of early vision, schemas for high-level vision,goal-directed movements, modular learning, effects of applied electric current fields on corticalneural activity neuropsychological studies of brain and mind, and an information-theoretic view ofanalog representation in striate cortex.Eric L. Schwartz is Professor of Brain Research and ResearchProfessor of Computer Science, Courant Institute of Mathematical Sciences, New York UniversityMedical Center. Computational Neuroscience is included in the System Development FoundationBenchmark Series.

The Functional Role of Critical Dynamics in Neural Systems

The Functional Role of Critical Dynamics in Neural Systems PDF Author: Nergis Tomen
Publisher: Springer
ISBN: 3030209652
Category : Medical
Languages : en
Pages : 301

Book Description
This book offers a timely overview of theories and methods developed by an authoritative group of researchers to understand the link between criticality and brain functioning. Cortical information processing in particular and brain function in general rely heavily on the collective dynamics of neurons and networks distributed over many brain areas. A key concept for characterizing and understanding brain dynamics is the idea that networks operate near a critical state, which offers several potential benefits for computation and information processing. However, there is still a large gap between research on criticality and understanding brain function. For example, cortical networks are not homogeneous but highly structured, they are not in a state of spontaneous activation but strongly driven by changing external stimuli, and they process information with respect to behavioral goals. So far the questions relating to how critical dynamics may support computation in this complex setting, and whether they can outperform other information processing schemes remain open. Based on the workshop “Dynamical Network States, Criticality and Cortical Function", held in March 2017 at the Hanse Institute for Advanced Studies (HWK) in Delmenhorst, Germany, the book provides readers with extensive information on these topics, as well as tools and ideas to answer the above-mentioned questions. It is meant for physicists, computational and systems neuroscientists, and biologists.

Metastable Dynamics of Neural Ensembles

Metastable Dynamics of Neural Ensembles PDF Author: Emili Balaguer-Ballester
Publisher: Frontiers Media SA
ISBN: 2889454371
Category :
Languages : en
Pages : 152

Book Description
A classical view of neural computation is that it can be characterized in terms of convergence to attractor states or sequential transitions among states in a noisy background. After over three decades, is this still a valid model of how brain dynamics implements cognition? This book provides a comprehensive collection of recent theoretical and experimental contributions addressing the question of stable versus transient neural population dynamics from complementary angles. These studies showcase recent efforts for designing a framework that encompasses the multiple facets of metastability in neural responses, one of the most exciting topics currently in systems and computational neuroscience.

Principles of Brain Dynamics

Principles of Brain Dynamics PDF Author: Mikhail I. Rabinovich
Publisher: MIT Press
ISBN: 0262549905
Category : Medical
Languages : en
Pages : 371

Book Description
Experimental and theoretical approaches to global brain dynamics that draw on the latest research in the field. The consideration of time or dynamics is fundamental for all aspects of mental activity—perception, cognition, and emotion—because the main feature of brain activity is the continuous change of the underlying brain states even in a constant environment. The application of nonlinear dynamics to the study of brain activity began to flourish in the 1990s when combined with empirical observations from modern morphological and physiological observations. This book offers perspectives on brain dynamics that draw on the latest advances in research in the field. It includes contributions from both theoreticians and experimentalists, offering an eclectic treatment of fundamental issues. Topics addressed range from experimental and computational approaches to transient brain dynamics to the free-energy principle as a global brain theory. The book concludes with a short but rigorous guide to modern nonlinear dynamics and their application to neural dynamics.

The Neocortex

The Neocortex PDF Author: Wolf Singer
Publisher: MIT Press
ISBN: 0262043246
Category : Science
Languages : en
Pages : 449

Book Description
Experts review the latest research on the neocortex and consider potential directions for future research. Over the past decade, technological advances have dramatically increased information on the structural and functional organization of the brain, especially the cerebral cortex. This explosion of data has radically expanded our ability to characterize neural circuits and intervene at increasingly higher resolutions, but it is unclear how this has informed our understanding of underlying mechanisms and processes. In search of a conceptual framework to guide future research, leading researchers address in this volume the evolution and ontogenetic development of cortical structures, the cortical connectome, and functional properties of neuronal circuits and populations. They explore what constitutes “uniquely human” mental capacities and whether neural solutions and computations can be shared across species or repurposed for potentially uniquely human capacities. Contributors Danielle S. Bassett, Randy M. Bruno, Elizabeth A. Buffalo, Michael E. Coulter, Hermann Cuntz, Stanislas Dehaene, James J. DiCarlo, Pascal Fries, Karl J. Friston, Asif A. Ghazanfar, Anne-Lise Giraud, Joshua I. Gold, Scott T. Grafton, Jennifer M. Groh, Elizabeth A. Grove, Saskia Haegens, Kenneth D. Harris, Kristen M. Harris, Nicholas G. Hatsopoulos, Tarik F. Haydar, Takao K. Hensch, Wieland B. Huttner, Matthias Kaschube, Gilles Laurent, David A. Leopold, Johannes Leugering, Belen Lorente-Galdos, Jason N. MacLean, David A. McCormick, Lucia Melloni, Anish Mitra, Zoltán Molnár, Sydney K. Muchnik, Pascal Nieters, Marcel Oberlaender, Bijan Pesaran, Christopher I. Petkov, Gordon Pipa, David Poeppel, Marcus E. Raichle, Pasko Rakic, John H. Reynolds, Ryan V. Raut, John L. Rubenstein, Andrew B. Schwartz, Terrence J. Sejnowski, Nenad Sestan, Debra L. Silver, Wolf Singer, Peter L. Strick, Michael P. Stryker, Mriganka Sur, Mary Elizabeth Sutherland, Maria Antonietta Tosches, William A. Tyler, Martin Vinck, Christopher A. Walsh, Perry Zurn

Micro-, Meso- and Macro-Dynamics of the Brain

Micro-, Meso- and Macro-Dynamics of the Brain PDF Author: György Buzsáki
Publisher: Springer
ISBN: 3319288024
Category : Medical
Languages : en
Pages : 181

Book Description
This book brings together leading investigators who represent various aspects of brain dynamics with the goal of presenting state-of-the-art current progress and address future developments. The individual chapters cover several fascinating facets of contemporary neuroscience from elementary computation of neurons, mesoscopic network oscillations, internally generated assembly sequences in the service of cognition, large-scale neuronal interactions within and across systems, the impact of sleep on cognition, memory, motor-sensory integration, spatial navigation, large-scale computation and consciousness. Each of these topics require appropriate levels of analyses with sufficiently high temporal and spatial resolution of neuronal activity in both local and global networks, supplemented by models and theories to explain how different levels of brain dynamics interact with each other and how the failure of such interactions results in neurologic and mental disease. While such complex questions cannot be answered exhaustively by a dozen or so chapters, this volume offers a nice synthesis of current thinking and work-in-progress on micro-, meso- and macro- dynamics of the brain.

Neural Masses and Fields: Modelling the Dynamics of Brain Activity

Neural Masses and Fields: Modelling the Dynamics of Brain Activity PDF Author: Karl Friston
Publisher: Frontiers Media SA
ISBN: 2889194272
Category : Differential equations
Languages : en
Pages : 238

Book Description
Biophysical modelling of brain activity has a long and illustrious history and has recently profited from technological advances that furnish neuroimaging data at an unprecedented spatiotemporal resolution. Neuronal modelling is a very active area of research, with applications ranging from the characterization of neurobiological and cognitive processes, to constructing artificial brains in silico and building brain-machine interface and neuroprosthetic devices. Biophysical modelling has always benefited from interdisciplinary interactions between different and seemingly distant fields; ranging from mathematics and engineering to linguistics and psychology. This Research Topic aims to promote such interactions by promoting papers that contribute to a deeper understanding of neural activity as measured by fMRI or electrophysiology. In general, mean field models of neural activity can be divided into two classes: neural mass and neural field models. The main difference between these classes is that field models prescribe how a quantity characterizing neural activity (such as average depolarization of a neural population) evolves over both space and time as opposed to mass models, which characterize activity over time only; by assuming that all neurons in a population are located at (approximately) the same point. This Research Topic focuses on both classes of models and considers several aspects and their relative merits that: span from synapses to the whole brain; comparisons of their predictions with EEG and MEG spectra of spontaneous brain activity; evoked responses, seizures, and fitting data - to infer brain states and map physiological parameters.