Computational Methods in Transport: Verification and Validation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Computational Methods in Transport: Verification and Validation PDF full book. Access full book title Computational Methods in Transport: Verification and Validation by Frank Graziani. Download full books in PDF and EPUB format.

Computational Methods in Transport: Verification and Validation

Computational Methods in Transport: Verification and Validation PDF Author: Frank Graziani
Publisher: Springer Science & Business Media
ISBN: 3540773622
Category : Science
Languages : en
Pages : 336

Book Description
The focus of this book deals with a cross cutting issue affecting all transport disciplines, whether it be photon, neutron, charged particle or neutrino transport. That is, verification and validation. In this book, we learn what the astrophysicist, atmospheric scientist, mathematician or nuclear engineer do to assess the accuracy of their code. What convergence studies, what error analysis, what problems do each field use to ascertain the accuracy of their transport simulations.

Computational Methods in Transport: Verification and Validation

Computational Methods in Transport: Verification and Validation PDF Author: Frank Graziani
Publisher: Springer Science & Business Media
ISBN: 3540773622
Category : Science
Languages : en
Pages : 336

Book Description
The focus of this book deals with a cross cutting issue affecting all transport disciplines, whether it be photon, neutron, charged particle or neutrino transport. That is, verification and validation. In this book, we learn what the astrophysicist, atmospheric scientist, mathematician or nuclear engineer do to assess the accuracy of their code. What convergence studies, what error analysis, what problems do each field use to ascertain the accuracy of their transport simulations.

AIAA Guide for the Verification and Validation of Computational Fluid Dynamics Simulations

AIAA Guide for the Verification and Validation of Computational Fluid Dynamics Simulations PDF Author: American Institute of Aeronautics and Astronautics
Publisher: AIAA (American Institute of Aeronautics & Astronautics)
ISBN: 9781563472855
Category : Computational fluid dynamics
Languages : en
Pages : 0

Book Description
This document defines a number of key terms, discusses fundamental concepts, and specifies general procedures for conducting verification and validation of computational fluid dynamics simulations. It's goal is to provide a foundation for the major issues and concepts in verification and validation. However, it does not recommend standards in these areas because a number of important issues are not yet resolved.

Verification and Validation in Computational Science and Engineering

Verification and Validation in Computational Science and Engineering PDF Author: Patrick J. Roache
Publisher:
ISBN: 9780913478080
Category : Algorithms
Languages : en
Pages : 0

Book Description


Eigenvalue Problems: Algorithms, Software and Applications in Petascale Computing

Eigenvalue Problems: Algorithms, Software and Applications in Petascale Computing PDF Author: Tetsuya Sakurai
Publisher: Springer
ISBN: 3319624261
Category : Computers
Languages : en
Pages : 312

Book Description
This book provides state-of-the-art and interdisciplinary topics on solving matrix eigenvalue problems, particularly by using recent petascale and upcoming post-petascale supercomputers. It gathers selected topics presented at the International Workshops on Eigenvalue Problems: Algorithms; Software and Applications, in Petascale Computing (EPASA2014 and EPASA2015), which brought together leading researchers working on the numerical solution of matrix eigenvalue problems to discuss and exchange ideas – and in so doing helped to create a community for researchers in eigenvalue problems. The topics presented in the book, including novel numerical algorithms, high-performance implementation techniques, software developments and sample applications, will contribute to various fields that involve solving large-scale eigenvalue problems.

Software for Exascale Computing - SPPEXA 2016-2019

Software for Exascale Computing - SPPEXA 2016-2019 PDF Author: Hans-Joachim Bungartz
Publisher: Springer Nature
ISBN: 3030479560
Category : Computers
Languages : en
Pages : 624

Book Description
This open access book summarizes the research done and results obtained in the second funding phase of the Priority Program 1648 "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) presented at the SPPEXA Symposium in Dresden during October 21-23, 2019. In that respect, it both represents a continuation of Vol. 113 in Springer’s series Lecture Notes in Computational Science and Engineering, the corresponding report of SPPEXA’s first funding phase, and provides an overview of SPPEXA’s contributions towards exascale computing in today's sumpercomputer technology. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest.

Multiscale Models in Mechano and Tumor Biology

Multiscale Models in Mechano and Tumor Biology PDF Author: Alf Gerisch
Publisher: Springer
ISBN: 3319733710
Category : Mathematics
Languages : en
Pages : 205

Book Description
This book presents and discusses the state of the art and future perspectives in mathematical modeling and homogenization techniques with the focus on addressing key physiological issues in the context of multiphase healthy and malignant biological materials. The highly interdisciplinary content brings together contributions from scientists with complementary areas of expertise, such as pure and applied mathematicians, engineers, and biophysicists. The book also features the lecture notes from a half-day introductory course on asymptotic homogenization. These notes are suitable for undergraduate mathematics or physics students, while the other chapters are aimed at graduate students and researchers.

Sparse Grids and Applications - Miami 2016

Sparse Grids and Applications - Miami 2016 PDF Author: Jochen Garcke
Publisher: Springer
ISBN: 3319754262
Category : Mathematics
Languages : en
Pages : 265

Book Description
Sparse grids are a popular tool for the numerical treatment of high-dimensional problems. Where classical numerical discretization schemes fail in more than three or four dimensions, sparse grids, in their different flavors, are frequently the method of choice. This volume of LNCSE presents selected papers from the proceedings of the fourth workshop on sparse grids and applications, and demonstrates once again the importance of this numerical discretization scheme. The articles present recent advances in the numerical analysis of sparse grids in connection with a range of applications including computational chemistry, computational fluid dynamics, and big data analytics, to name but a few.

DUNE — The Distributed and Unified Numerics Environment

DUNE — The Distributed and Unified Numerics Environment PDF Author: Oliver Sander
Publisher: Springer Nature
ISBN: 3030597024
Category : Computers
Languages : en
Pages : 616

Book Description
The Distributed and Unified Numerics Environment (Dune) is a set of open-source C++ libraries for the implementation of finite element and finite volume methods. Over the last 15 years it has become one of the most commonly used libraries for the implementation of new, efficient simulation methods in science and engineering. Describing the main Dune libraries in detail, this book covers access to core features like grids, shape functions, and linear algebra, but also higher-level topics like function space bases and assemblers. It includes extensive information on programmer interfaces, together with a wealth of completed examples that illustrate how these interfaces are used in practice. After having read the book, readers will be prepared to write their own advanced finite element simulators, tapping the power of Dune to do so.

Scientific Computing

Scientific Computing PDF Author: Bertil Gustafsson
Publisher: Springer
ISBN: 3319698478
Category : Mathematics
Languages : en
Pages : 271

Book Description
This book explores the most significant computational methods and the history of their development. It begins with the earliest mathematical / numerical achievements made by the Babylonians and the Greeks, followed by the period beginning in the 16th century. For several centuries the main scientific challenge concerned the mechanics of planetary dynamics, and the book describes the basic numerical methods of that time. In turn, at the end of the Second World War scientific computing took a giant step forward with the advent of electronic computers, which greatly accelerated the development of numerical methods. As a result, scientific computing became established as a third scientific method in addition to the two traditional branches: theory and experimentation. The book traces numerical methods’ journey back to their origins and to the people who invented them, while also briefly examining the development of electronic computers over the years. Featuring 163 references and more than 100 figures, many of them portraits or photos of key historical figures, the book provides a unique historical perspective on the general field of scientific computing – making it a valuable resource for all students and professionals interested in the history of numerical analysis and computing, and for a broader readership alike.

Computing Characterizations of Drugs for Ion Channels and Receptors Using Markov Models

Computing Characterizations of Drugs for Ion Channels and Receptors Using Markov Models PDF Author: Aslak Tveito
Publisher: Springer
ISBN: 331930030X
Category : Computers
Languages : en
Pages : 279

Book Description
Flow of ions through voltage gated channels can be represented theoretically using stochastic differential equations where the gating mechanism is represented by a Markov model. The flow through a channel can be manipulated using various drugs, and the effect of a given drug can be reflected by changing the Markov model. These lecture notes provide an accessible introduction to the mathematical methods needed to deal with these models. They emphasize the use of numerical methods and provide sufficient details for the reader to implement the models and thereby study the effect of various drugs. Examples in the text include stochastic calcium release from internal storage systems in cells, as well as stochastic models of the transmembrane potential. Well known Markov models are studied and a systematic approach to including the effect of mutations is presented. Lastly, the book shows how to derive the optimal properties of a theoretical model of a drug for a given mutation defined in terms of a Markov model.