Author: Alan J. Laub
Publisher: SIAM
ISBN: 1611972205
Category : Mathematics
Languages : en
Pages : 167
Book Description
This text provides an introduction to numerical linear algebra together with its application to solving problems arising in state-space control and systems theory. The book provides a number of elements designed to help the reader learn to use numerical linear algebra in day-to-day computing or research, including a brief review of matrix analysis and an introduction to finite (IEEE) arithmetic, alongside discussion of mathematical software topics. In addition to the fundamental concepts, the text covers statistical condition estimation and gives an overview of certain computational problems in control and systems theory. Engineers and scientists will find this text valuable as a theoretical resource to complement their work in algorithms. For graduate students beginning their study, or advanced undergraduates, this text is ideal as a one-semester course in numerical linear algebra and is a natural follow-on to the author's previous book, Matrix Analysis for Scientists and Engineers.
Computational Matrix Analysis
Author: Alan J. Laub
Publisher: SIAM
ISBN: 1611972205
Category : Mathematics
Languages : en
Pages : 167
Book Description
This text provides an introduction to numerical linear algebra together with its application to solving problems arising in state-space control and systems theory. The book provides a number of elements designed to help the reader learn to use numerical linear algebra in day-to-day computing or research, including a brief review of matrix analysis and an introduction to finite (IEEE) arithmetic, alongside discussion of mathematical software topics. In addition to the fundamental concepts, the text covers statistical condition estimation and gives an overview of certain computational problems in control and systems theory. Engineers and scientists will find this text valuable as a theoretical resource to complement their work in algorithms. For graduate students beginning their study, or advanced undergraduates, this text is ideal as a one-semester course in numerical linear algebra and is a natural follow-on to the author's previous book, Matrix Analysis for Scientists and Engineers.
Publisher: SIAM
ISBN: 1611972205
Category : Mathematics
Languages : en
Pages : 167
Book Description
This text provides an introduction to numerical linear algebra together with its application to solving problems arising in state-space control and systems theory. The book provides a number of elements designed to help the reader learn to use numerical linear algebra in day-to-day computing or research, including a brief review of matrix analysis and an introduction to finite (IEEE) arithmetic, alongside discussion of mathematical software topics. In addition to the fundamental concepts, the text covers statistical condition estimation and gives an overview of certain computational problems in control and systems theory. Engineers and scientists will find this text valuable as a theoretical resource to complement their work in algorithms. For graduate students beginning their study, or advanced undergraduates, this text is ideal as a one-semester course in numerical linear algebra and is a natural follow-on to the author's previous book, Matrix Analysis for Scientists and Engineers.
Applied and Computational Matrix Analysis
Author: Natália Bebiano
Publisher: Springer
ISBN: 331949984X
Category : Mathematics
Languages : en
Pages : 346
Book Description
This volume presents recent advances in the field of matrix analysis based on contributions at the MAT-TRIAD 2015 conference. Topics covered include interval linear algebra and computational complexity, Birkhoff polynomial basis, tensors, graphs, linear pencils, K-theory and statistic inference, showing the ubiquity of matrices in different mathematical areas. With a particular focus on matrix and operator theory, statistical models and computation, the International Conference on Matrix Analysis and its Applications 2015, held in Coimbra, Portugal, was the sixth in a series of conferences. Applied and Computational Matrix Analysis will appeal to graduate students and researchers in theoretical and applied mathematics, physics and engineering who are seeking an overview of recent problems and methods in matrix analysis.
Publisher: Springer
ISBN: 331949984X
Category : Mathematics
Languages : en
Pages : 346
Book Description
This volume presents recent advances in the field of matrix analysis based on contributions at the MAT-TRIAD 2015 conference. Topics covered include interval linear algebra and computational complexity, Birkhoff polynomial basis, tensors, graphs, linear pencils, K-theory and statistic inference, showing the ubiquity of matrices in different mathematical areas. With a particular focus on matrix and operator theory, statistical models and computation, the International Conference on Matrix Analysis and its Applications 2015, held in Coimbra, Portugal, was the sixth in a series of conferences. Applied and Computational Matrix Analysis will appeal to graduate students and researchers in theoretical and applied mathematics, physics and engineering who are seeking an overview of recent problems and methods in matrix analysis.
Matrix Analysis and Computations
Author: Zhong-Zhi Bai
Publisher: SIAM
ISBN: 1611976634
Category : Mathematics
Languages : en
Pages : 496
Book Description
This comprehensive book is presented in two parts; the first part introduces the basics of matrix analysis necessary for matrix computations, and the second part presents representative methods and the corresponding theories in matrix computations. Among the key features of the book are the extensive exercises at the end of each chapter. Matrix Analysis and Computations provides readers with the matrix theory necessary for matrix computations, especially for direct and iterative methods for solving systems of linear equations. It includes systematic methods and rigorous theory on matrix splitting iteration methods and Krylov subspace iteration methods, as well as current results on preconditioning and iterative methods for solving standard and generalized saddle-point linear systems. This book can be used as a textbook for graduate students as well as a self-study tool and reference for researchers and engineers interested in matrix analysis and matrix computations. It is appropriate for courses in numerical analysis, numerical optimization, data science, and approximation theory, among other topics
Publisher: SIAM
ISBN: 1611976634
Category : Mathematics
Languages : en
Pages : 496
Book Description
This comprehensive book is presented in two parts; the first part introduces the basics of matrix analysis necessary for matrix computations, and the second part presents representative methods and the corresponding theories in matrix computations. Among the key features of the book are the extensive exercises at the end of each chapter. Matrix Analysis and Computations provides readers with the matrix theory necessary for matrix computations, especially for direct and iterative methods for solving systems of linear equations. It includes systematic methods and rigorous theory on matrix splitting iteration methods and Krylov subspace iteration methods, as well as current results on preconditioning and iterative methods for solving standard and generalized saddle-point linear systems. This book can be used as a textbook for graduate students as well as a self-study tool and reference for researchers and engineers interested in matrix analysis and matrix computations. It is appropriate for courses in numerical analysis, numerical optimization, data science, and approximation theory, among other topics
Matrix Computations
Author: Gene Howard Golub
Publisher:
ISBN: 9780946536054
Category : Matrices
Languages : en
Pages : 476
Book Description
Publisher:
ISBN: 9780946536054
Category : Matrices
Languages : en
Pages : 476
Book Description
Fundamentals of Matrix Analysis with Applications
Author: Edward Barry Saff
Publisher: John Wiley & Sons
ISBN: 1118953657
Category : Mathematics
Languages : en
Pages : 407
Book Description
An accessible and clear introduction to linear algebra with a focus on matrices and engineering applications Providing comprehensive coverage of matrix theory from a geometric and physical perspective, Fundamentals of Matrix Analysis with Applications describes the functionality of matrices and their ability to quantify and analyze many practical applications. Written by a highly qualified author team, the book presents tools for matrix analysis and is illustrated with extensive examples and software implementations. Beginning with a detailed exposition and review of the Gauss elimination method, the authors maintain readers’ interest with refreshing discussions regarding the issues of operation counts, computer speed and precision, complex arithmetic formulations, parameterization of solutions, and the logical traps that dictate strict adherence to Gauss’s instructions. The book heralds matrix formulation both as notational shorthand and as a quantifier of physical operations such as rotations, projections, reflections, and the Gauss reductions. Inverses and eigenvectors are visualized first in an operator context before being addressed computationally. Least squares theory is expounded in all its manifestations including optimization, orthogonality, computational accuracy, and even function theory. Fundamentals of Matrix Analysis with Applications also features: Novel approaches employed to explicate the QR, singular value, Schur, and Jordan decompositions and their applications Coverage of the role of the matrix exponential in the solution of linear systems of differential equations with constant coefficients Chapter-by-chapter summaries, review problems, technical writing exercises, select solutions, and group projects to aid comprehension of the presented concepts Fundamentals of Matrix Analysis with Applications is an excellent textbook for undergraduate courses in linear algebra and matrix theory for students majoring in mathematics, engineering, and science. The book is also an accessible go-to reference for readers seeking clarification of the fine points of kinematics, circuit theory, control theory, computational statistics, and numerical algorithms.
Publisher: John Wiley & Sons
ISBN: 1118953657
Category : Mathematics
Languages : en
Pages : 407
Book Description
An accessible and clear introduction to linear algebra with a focus on matrices and engineering applications Providing comprehensive coverage of matrix theory from a geometric and physical perspective, Fundamentals of Matrix Analysis with Applications describes the functionality of matrices and their ability to quantify and analyze many practical applications. Written by a highly qualified author team, the book presents tools for matrix analysis and is illustrated with extensive examples and software implementations. Beginning with a detailed exposition and review of the Gauss elimination method, the authors maintain readers’ interest with refreshing discussions regarding the issues of operation counts, computer speed and precision, complex arithmetic formulations, parameterization of solutions, and the logical traps that dictate strict adherence to Gauss’s instructions. The book heralds matrix formulation both as notational shorthand and as a quantifier of physical operations such as rotations, projections, reflections, and the Gauss reductions. Inverses and eigenvectors are visualized first in an operator context before being addressed computationally. Least squares theory is expounded in all its manifestations including optimization, orthogonality, computational accuracy, and even function theory. Fundamentals of Matrix Analysis with Applications also features: Novel approaches employed to explicate the QR, singular value, Schur, and Jordan decompositions and their applications Coverage of the role of the matrix exponential in the solution of linear systems of differential equations with constant coefficients Chapter-by-chapter summaries, review problems, technical writing exercises, select solutions, and group projects to aid comprehension of the presented concepts Fundamentals of Matrix Analysis with Applications is an excellent textbook for undergraduate courses in linear algebra and matrix theory for students majoring in mathematics, engineering, and science. The book is also an accessible go-to reference for readers seeking clarification of the fine points of kinematics, circuit theory, control theory, computational statistics, and numerical algorithms.
Matrix Iterative Analysis
Author: Richard S Varga
Publisher: Springer Science & Business Media
ISBN: 3642051561
Category : Mathematics
Languages : en
Pages : 363
Book Description
This book is a revised version of the first edition, regarded as a classic in its field. In some places, newer research results have been incorporated in the revision, and in other places, new material has been added to the chapters in the form of additional up-to-date references and some recent theorems to give readers some new directions to pursue.
Publisher: Springer Science & Business Media
ISBN: 3642051561
Category : Mathematics
Languages : en
Pages : 363
Book Description
This book is a revised version of the first edition, regarded as a classic in its field. In some places, newer research results have been incorporated in the revision, and in other places, new material has been added to the chapters in the form of additional up-to-date references and some recent theorems to give readers some new directions to pursue.
Numerical Matrix Analysis
Author: Ilse C. F. Ipsen
Publisher: SIAM
ISBN: 0898716764
Category : Mathematics
Languages : en
Pages : 135
Book Description
Matrix analysis presented in the context of numerical computation at a basic level.
Publisher: SIAM
ISBN: 0898716764
Category : Mathematics
Languages : en
Pages : 135
Book Description
Matrix analysis presented in the context of numerical computation at a basic level.
Matrix Algebra
Author: James E. Gentle
Publisher: Springer Science & Business Media
ISBN: 0387708723
Category : Computers
Languages : en
Pages : 536
Book Description
Matrix algebra is one of the most important areas of mathematics for data analysis and for statistical theory. This much-needed work presents the relevant aspects of the theory of matrix algebra for applications in statistics. It moves on to consider the various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes the special properties of those matrices. Finally, it covers numerical linear algebra, beginning with a discussion of the basics of numerical computations, and following up with accurate and efficient algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors.
Publisher: Springer Science & Business Media
ISBN: 0387708723
Category : Computers
Languages : en
Pages : 536
Book Description
Matrix algebra is one of the most important areas of mathematics for data analysis and for statistical theory. This much-needed work presents the relevant aspects of the theory of matrix algebra for applications in statistics. It moves on to consider the various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes the special properties of those matrices. Finally, it covers numerical linear algebra, beginning with a discussion of the basics of numerical computations, and following up with accurate and efficient algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors.
Functions of Matrices
Author: Nicholas J. Higham
Publisher: SIAM
ISBN: 0898717779
Category : Mathematics
Languages : en
Pages : 445
Book Description
A thorough and elegant treatment of the theory of matrix functions and numerical methods for computing them, including an overview of applications, new and unpublished research results, and improved algorithms. Key features include a detailed treatment of the matrix sign function and matrix roots; a development of the theory of conditioning and properties of the Fre;chet derivative; Schur decomposition; block Parlett recurrence; a thorough analysis of the accuracy, stability, and computational cost of numerical methods; general results on convergence and stability of matrix iterations; and a chapter devoted to the f(A)b problem. Ideal for advanced courses and for self-study, its broad content, references and appendix also make this book a convenient general reference. Contains an extensive collection of problems with solutions and MATLAB implementations of key algorithms.
Publisher: SIAM
ISBN: 0898717779
Category : Mathematics
Languages : en
Pages : 445
Book Description
A thorough and elegant treatment of the theory of matrix functions and numerical methods for computing them, including an overview of applications, new and unpublished research results, and improved algorithms. Key features include a detailed treatment of the matrix sign function and matrix roots; a development of the theory of conditioning and properties of the Fre;chet derivative; Schur decomposition; block Parlett recurrence; a thorough analysis of the accuracy, stability, and computational cost of numerical methods; general results on convergence and stability of matrix iterations; and a chapter devoted to the f(A)b problem. Ideal for advanced courses and for self-study, its broad content, references and appendix also make this book a convenient general reference. Contains an extensive collection of problems with solutions and MATLAB implementations of key algorithms.
Hierarchical Matrices: Algorithms and Analysis
Author: Wolfgang Hackbusch
Publisher: Springer
ISBN: 3662473240
Category : Mathematics
Languages : en
Pages : 532
Book Description
This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists in computational mathematics, physics, chemistry and engineering.
Publisher: Springer
ISBN: 3662473240
Category : Mathematics
Languages : en
Pages : 532
Book Description
This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists in computational mathematics, physics, chemistry and engineering.