Computational Mathematics, Algorithms, and Data Processing PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Computational Mathematics, Algorithms, and Data Processing PDF full book. Access full book title Computational Mathematics, Algorithms, and Data Processing by Daniele Mortari. Download full books in PDF and EPUB format.

Computational Mathematics, Algorithms, and Data Processing

Computational Mathematics, Algorithms, and Data Processing PDF Author: Daniele Mortari
Publisher: MDPI
ISBN: 3039435914
Category : Technology & Engineering
Languages : en
Pages : 172

Book Description
“Computational Mathematics, Algorithms, and Data Processing” of MDPI consists of articles on new mathematical tools and numerical methods for computational problems. Topics covered include: numerical stability, interpolation, approximation, complexity, numerical linear algebra, differential equations (ordinary, partial), optimization, integral equations, systems of nonlinear equations, compression or distillation, and active learning.

Computational Mathematics, Algorithms, and Data Processing

Computational Mathematics, Algorithms, and Data Processing PDF Author: Daniele Mortari
Publisher: MDPI
ISBN: 3039435914
Category : Technology & Engineering
Languages : en
Pages : 172

Book Description
“Computational Mathematics, Algorithms, and Data Processing” of MDPI consists of articles on new mathematical tools and numerical methods for computational problems. Topics covered include: numerical stability, interpolation, approximation, complexity, numerical linear algebra, differential equations (ordinary, partial), optimization, integral equations, systems of nonlinear equations, compression or distillation, and active learning.

Introduction To Computational Mathematics (2nd Edition)

Introduction To Computational Mathematics (2nd Edition) PDF Author: Xin-she Yang
Publisher: World Scientific Publishing Company
ISBN: 9814635804
Category : Mathematics
Languages : en
Pages : 342

Book Description
This unique book provides a comprehensive introduction to computational mathematics, which forms an essential part of contemporary numerical algorithms, scientific computing and optimization. It uses a theorem-free approach with just the right balance between mathematics and numerical algorithms. This edition covers all major topics in computational mathematics with a wide range of carefully selected numerical algorithms, ranging from the root-finding algorithm, numerical integration, numerical methods of partial differential equations, finite element methods, optimization algorithms, stochastic models, nonlinear curve-fitting to data modelling, bio-inspired algorithms and swarm intelligence. This book is especially suitable for both undergraduates and graduates in computational mathematics, numerical algorithms, scientific computing, mathematical programming, artificial intelligence and engineering optimization. Thus, it can be used as a textbook and/or reference book.

Computational Probability

Computational Probability PDF Author: John H. Drew
Publisher: Springer Science & Business Media
ISBN: 0387746765
Category : Mathematics
Languages : en
Pages : 220

Book Description
This title organizes computational probability methods into a systematic treatment. The book examines two categories of problems. "Algorithms for Continuous Random Variables" covers data structures and algorithms, transformations of random variables, and products of independent random variables. "Algorithms for Discrete Random Variables" discusses data structures and algorithms, sums of independent random variables, and order statistics.

Computational Mathematics, Numerical Analysis and Applications

Computational Mathematics, Numerical Analysis and Applications PDF Author: Mariano Mateos
Publisher: Springer
ISBN: 331949631X
Category : Mathematics
Languages : en
Pages : 259

Book Description
The first part of this volume gathers the lecture notes of the courses of the “XVII Escuela Hispano-Francesa”, held in Gijón, Spain, in June 2016. Each chapter is devoted to an advanced topic and presents state-of-the-art research in a didactic and self-contained way. Young researchers will find a complete guide to beginning advanced work in fields such as High Performance Computing, Numerical Linear Algebra, Optimal Control of Partial Differential Equations and Quantum Mechanics Simulation, while experts in these areas will find a comprehensive reference guide, including some previously unpublished results, and teachers may find these chapters useful as textbooks in graduate courses. The second part features the extended abstracts of selected research work presented by the students during the School. It highlights new results and applications in Computational Algebra, Fluid Mechanics, Chemical Kinetics and Biomedicine, among others, offering interested researchers a convenient reference guide to these latest advances.

Numerical Algorithms

Numerical Algorithms PDF Author: Justin Solomon
Publisher: CRC Press
ISBN: 1482251892
Category : Computers
Languages : en
Pages : 400

Book Description
Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig

Mathematics and Computation

Mathematics and Computation PDF Author: Avi Wigderson
Publisher: Princeton University Press
ISBN: 0691189137
Category : Computers
Languages : en
Pages : 434

Book Description
From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography

Probability and Computing

Probability and Computing PDF Author: Michael Mitzenmacher
Publisher: Cambridge University Press
ISBN: 9780521835404
Category : Computers
Languages : en
Pages : 372

Book Description
Randomization and probabilistic techniques play an important role in modern computer science, with applications ranging from combinatorial optimization and machine learning to communication networks and secure protocols. This 2005 textbook is designed to accompany a one- or two-semester course for advanced undergraduates or beginning graduate students in computer science and applied mathematics. It gives an excellent introduction to the probabilistic techniques and paradigms used in the development of probabilistic algorithms and analyses. It assumes only an elementary background in discrete mathematics and gives a rigorous yet accessible treatment of the material, with numerous examples and applications. The first half of the book covers core material, including random sampling, expectations, Markov's inequality, Chevyshev's inequality, Chernoff bounds, the probabilistic method and Markov chains. The second half covers more advanced topics such as continuous probability, applications of limited independence, entropy, Markov chain Monte Carlo methods and balanced allocations. With its comprehensive selection of topics, along with many examples and exercises, this book is an indispensable teaching tool.

Mathematics for Algorithm and Systems Analysis

Mathematics for Algorithm and Systems Analysis PDF Author: Edward A. Bender
Publisher: Courier Corporation
ISBN: 0486442500
Category : Mathematics
Languages : en
Pages : 258

Book Description
Discrete mathematics is fundamental to computer science, and this up-to-date text assists undergraduates in mastering the ideas and mathematical language to address problems that arise in the field's many applications. It consists of 4 units of study: counting and listing, functions, decision trees and recursion, and basic concepts of graph theory.

Analysis of Algorithms

Analysis of Algorithms PDF Author: Micha Hofri
Publisher: Oxford University Press, USA
ISBN: 9780195099546
Category : Computer algorithms.
Languages : en
Pages : 618

Book Description
Analysis of Algorithms: Computational Methods & Mathematical Tools presents the methods and tools needed to determine the effectiveness of algorithms. It begins with basic computational tools such as generating functions, combinatorial calculus, and asymptomatic methods, and continues through applications such as searching and sorting, communications protocols, and bin packing heuristics. The techniques needed for an effective use of each concept are shown in examples, then in exercises for which detailed solutions are provided. Proofs are given to illustrate the focal topic of the chapter. While the book can be used as a reference tool for algorithm designers and scientists specializing in their analyses, the exercises also make this a useful guide for graduate courses and seminars. Much of the material is culled from recent journal articles, and is presented here for the first time in book form.

Machine Learning for Signal Processing

Machine Learning for Signal Processing PDF Author: Max A. Little
Publisher: Oxford University Press, USA
ISBN: 0198714939
Category : Computers
Languages : en
Pages : 378

Book Description
Describes in detail the fundamental mathematics and algorithms of machine learning (an example of artificial intelligence) and signal processing, two of the most important and exciting technologies in the modern information economy. Builds up concepts gradually so that the ideas and algorithms can be implemented in practical software applications.