Computational Chemistry: Reviews Of Current Trends, Vol. 5 PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Computational Chemistry: Reviews Of Current Trends, Vol. 5 PDF full book. Access full book title Computational Chemistry: Reviews Of Current Trends, Vol. 5 by Ermanno Gianinetti. Download full books in PDF and EPUB format.

Computational Chemistry: Reviews Of Current Trends, Vol. 5

Computational Chemistry: Reviews Of Current Trends, Vol. 5 PDF Author: Ermanno Gianinetti
Publisher: World Scientific
ISBN: 9814492698
Category : Science
Languages : en
Pages : 337

Book Description
This volume comprises six chapters which explore the development and applications of the methods of computational chemistry. The first chapter is on new developments in coupled-cluster (CC) theory. The homotopy method is used to obtain complete sets of solutions of nonlinear CC equations. The correspondence between multiple solutions to the CCSD, CCSDT, and full CI equations is established, and the applications of the new approach in modeling molecular systems are discussed. The second chapter reviews the computational theory for the time-dependent calculations of a solution to the Schrödinger equation for two electrons and focuses on the development of propagators to the solution.The next chapter features a discussion on a new self-consistent field for molecular interactions (SCF-MI) scheme for modifying Roothaan equations in order to avoid basis set superposition errors (BSSE). This method is especially suitable for computations of intermolecular interactions. Details of the theory, along with examples of applications to nucleic acid base pair complexes, are given. This chapter is well complemented by the following chapter, which reports the current status of computational studies of aromatic stacking and hydrogen bonding interactions among nucleic acid bases. The next chapter reveals the possibility of calculating the kinetics of chemical reactions in biological systems from the first principles. The last chapter reviews the results of rigorous ab initio studies of the series of derivatives of methane, silane, and germane. The presented molecular and vibrational parameters complement experimental data for these systems. In addition, the theoretical approach allows the prediction of the effects of halogeno-substitutions on their structures and properties.

Computational Chemistry: Reviews Of Current Trends, Vol. 5

Computational Chemistry: Reviews Of Current Trends, Vol. 5 PDF Author: Ermanno Gianinetti
Publisher: World Scientific
ISBN: 9814492698
Category : Science
Languages : en
Pages : 337

Book Description
This volume comprises six chapters which explore the development and applications of the methods of computational chemistry. The first chapter is on new developments in coupled-cluster (CC) theory. The homotopy method is used to obtain complete sets of solutions of nonlinear CC equations. The correspondence between multiple solutions to the CCSD, CCSDT, and full CI equations is established, and the applications of the new approach in modeling molecular systems are discussed. The second chapter reviews the computational theory for the time-dependent calculations of a solution to the Schrödinger equation for two electrons and focuses on the development of propagators to the solution.The next chapter features a discussion on a new self-consistent field for molecular interactions (SCF-MI) scheme for modifying Roothaan equations in order to avoid basis set superposition errors (BSSE). This method is especially suitable for computations of intermolecular interactions. Details of the theory, along with examples of applications to nucleic acid base pair complexes, are given. This chapter is well complemented by the following chapter, which reports the current status of computational studies of aromatic stacking and hydrogen bonding interactions among nucleic acid bases. The next chapter reveals the possibility of calculating the kinetics of chemical reactions in biological systems from the first principles. The last chapter reviews the results of rigorous ab initio studies of the series of derivatives of methane, silane, and germane. The presented molecular and vibrational parameters complement experimental data for these systems. In addition, the theoretical approach allows the prediction of the effects of halogeno-substitutions on their structures and properties.

Computational Chemistry: Reviews Of Current Trends, Vol. 10

Computational Chemistry: Reviews Of Current Trends, Vol. 10 PDF Author: Jerzy Leszczynski
Publisher: World Scientific
ISBN: 9814478245
Category : Science
Languages : en
Pages : 345

Book Description
There have been important developments in the last decade: computers are faster and more powerful, code features are enhanced and more efficient, and larger molecules can be studied — not only in vacuum but also in a solvent or in crystal. Researchers are using new techniques to study larger systems and obtain more accurate results. This is impetus for the development of more efficient methods based on the first-principle multi-level simulations appropriate for complex species.Among the cutting-edge methods and studies reviewed in this decennial volume of the series are the Density Functional Theory (DFT) method, vibrational electron energy loss spectroscopy (EELS), computational models of the reaction rate theory, the nuclear magnetic resonance triplet wavefunction model (NMRTWM) and biological reactions that benefit from computational studies.

Computational Chemistry: Reviews Of Current Trends, Vol. 7

Computational Chemistry: Reviews Of Current Trends, Vol. 7 PDF Author: Jerzy Leszczynski
Publisher: World Scientific
ISBN: 9814487783
Category : Science
Languages : en
Pages : 261

Book Description
Vast progress in the area of computational chemistry has been achieved in the last decade of the 20th century. Theoretical methods such as quantum mechanics, molecular dynamics and statistical mechanics have been successfully used to characterize chemical systems and to design new materials, drugs and chemicals. With this in mind, the contributions to this volume were collected.The contributions include predictions of the transport properties of molecular structures at the atomic level, which is of importance in solving crucial technological problems such as electromigration or temperature and statistical effects.Although currently restricted to calculation of systems containing no more than a few thousand atoms, nonempirical (ab initio) quantum chemical methods are quickly gaining popularity among researchers investigating various aspects of biological systems. The development of efficient methods for application to large molecular systems is the focus of two chapters. They include an overview of development and applications of parallel and order-N Density Functional Theory (DFT) methods and the development of new methods for calculation of electron dynamical correlation for large molecular systems.For small and medium-sized molecules, chemical accuracy of quantum chemical predictions has already been achieved in many fields of application. Among the most accurate methods are Coupled Cluster (CC) approaches, but their accuracy comes at a price — such methodologies are among the most computationally demanding. Two chapters review approximate strategies developed to include triple excitations within the coupled cluster and the performance of the explicitly correlated CC method based on the so-called R12 ansatz.The Quantum Molecular Dynamics (QMD) approach has revolutionized electronic structure calculations for molecular reactions. The last chapter of the volume provides details of QMD studies on interconversion of nitronium ions and nitric acid in small water clusters.

Computational Chemistry: Reviews Of Current Trends, Vol. 6

Computational Chemistry: Reviews Of Current Trends, Vol. 6 PDF Author: Marcel Allavena
Publisher: World Scientific
ISBN: 9814490784
Category : Science
Languages : en
Pages : 277

Book Description
There are strong indications that, in the 21st century, computational chemistry will be a prime research tool not only for the basic sciences but also for the life and materials sciences. Recent developments in nanotechnology allow us to detect a layer of single atoms. Researchers are able not only to image but also to manipulate molecules and atoms. It does not take much imagination to realize that before performing such a task on a real system it is much easier and faster to study models on computers. That is the aim of this volume — it provides up-to-date reviews which cover representative areas of computational chemistry.In Chapter 1, Y Ishikawa and M J Vilkas provide a review of multireference Moller-Plesset (MR-MP) perturbation theory. Fifteen years ago Roberto Car of Princeton University and Michele Parrinello of Max Planck Institute introduced a method that revolutionized electronic structure calculations for molecules, liquids and solids. Ursula Rothlisberger, a former member of Parrinello's group, reviews the formation of the method in its most common implementations in Chapter 2. In the third chapter, Isaac B Bersuker describes the general theory of the combined quantum mechanics-molecular mechanics (QM/MM) approach. In Chapter 4, Marcel Allavena and David White present a review of applications of computational chemistry to proton transfer, the primary process for acid-base chemistry on zeolites. Chapter 5 is a review by S Roszak and J Leszczynski of recent data on the clusters formed from the charged ion and weakly interacting ligands. The last chapter, contributed by Carlos R Handy, is devoted to recent developments in the incorporation of continuous wavelet transform analysis into quantum operator theory.

Computational Chemistry: Reviews Of Current Trends, Vol. 8

Computational Chemistry: Reviews Of Current Trends, Vol. 8 PDF Author: David M Close
Publisher: World Scientific
ISBN: 9814483567
Category : Science
Languages : en
Pages : 361

Book Description
The gap between experimental objects and models for calculations in chemistry is being bridged. The size of experimental nano-objects is decreasing, while reliable calculations are feasible for larger and larger molecular systems. The results of these calculations for isolated molecules are becoming more relevant for experiments. However, there are still significant challenges for computational methods. This series of books presents reviews of current advances in computational methodologies and applications.Chapter 1 of this volume provides an overview of the theoretical and numerical aspects in the development of the polarizable continuum model (PCM). Chapter 2 demonstrates a multiplicative scheme used to estimate the properties of two- and three-dimensional clusters from the properties of their one-dimensional components. Chapter 3 discusses the application of ab initio methods for a reliable evaluation of the characteristics of hydrogen-bonded and van der Waals complexes.Ab initio quantum-chemical methods are popular among researchers investigating various aspects of DNA. The properties of DNA base polyads linked by base-base hydrogen bonds are reviewed in Chapter 4, while Chapter 5 reviews the primary radiation-induced defects in nucleic acid building blocks, and how DNA can be influenced by chemical and environmental effects. Finally, Chapter 6 discusses available experimental data of DNA bases, base pairs, and their complexes with water.

Computational Chemistry: Reviews Of Current Trends, Vol. 9

Computational Chemistry: Reviews Of Current Trends, Vol. 9 PDF Author: Jerzy Leszczynski
Publisher: World Scientific
ISBN: 9814481394
Category : Science
Languages : en
Pages : 258

Book Description
Vast progress in the area of computational chemistry has been achieved in the last decade. Theoretical methods such as quantum mechanics, molecular dynamics and statistical mechanics have been successfully used to characterize chemical systems and to design new materials, drugs and chemicals. The reviews presented in this volume discuss the current advances in computational methodologies and their applications. The areas covered include materials science, nanotechnology, inorganic and biological systems. The major thrust of the book is to bring timely overviews of new findings and methods applied in the rapidly changing field of computational chemistry.

Computational Chemistry

Computational Chemistry PDF Author: Jerzy Leszczynski
Publisher: World Scientific
ISBN: 9812381163
Category : Science
Languages : en
Pages : 261

Book Description
Vast progress in the area of computational chemistry has been achieved in the last decade of the 20th century. Theoretical methods such as quantum mechanics, molecular dynamics and statistical mechanics have been successfully used to characterize chemical systems and to design new materials, drugs and chemicals. With this in mind, the contributions to this volume were collected.The contributions include predictions of the transport properties of molecular structures at the atomic level, which is of importance in solving crucial technological problems such as electromigration or temperature and statistical effects.Although currently restricted to calculation of systems containing no more than a few thousand atoms, nonempirical (ab initio) quantum chemical methods are quickly gaining popularity among researchers investigating various aspects of biological systems. The development of efficient methods for application to large molecular systems is the focus of two chapters. They include an overview of development and applications of parallel and order-N Density Functional Theory (DFT) methods and the development of new methods for calculation of electron dynamical correlation for large molecular systems.For small and medium-sized molecules, chemical accuracy of quantum chemical predictions has already been achieved in many fields of application. Among the most accurate methods are Coupled Cluster (CC) approaches, but their accuracy comes at a price ? such methodologies are among the most computationally demanding. Two chapters review approximate strategies developed to include triple excitations within the coupled cluster and the performance of the explicitly correlated CC method based on the so-called R12 ansatz.The Quantum Molecular Dynamics (QMD) approach has revolutionized electronic structure calculations for molecular reactions. The last chapter of the volume provides details of QMD studies on interconversion of nitronium ions and nitric acid in small water clusters.

Topics in the Theory of Chemical and Physical Systems

Topics in the Theory of Chemical and Physical Systems PDF Author: Jean Maruani
Publisher: Springer Science & Business Media
ISBN: 1402054602
Category : Science
Languages : en
Pages : 301

Book Description
This volume contains a selection of papers presented at the 10th European Workshop on Quantum Systems in Chemistry and Physics, held in Tunisia, from September 1st to 7th, 2005. The workshop’s aim was to bring together chemists and physicists with a common interest in the quantum-mechanical many-body problem. The volume offers unique insights into the fields of quantum chemical methods, molecular structure and spectroscopy, complexes and clusters.

Recent Advances in the Theory of Chemical and Physical Systems

Recent Advances in the Theory of Chemical and Physical Systems PDF Author: Jean-Pierre Julien
Publisher: Springer Science & Business Media
ISBN: 140204528X
Category : Science
Languages : en
Pages : 586

Book Description
Advances in the Theory of Chemical and Physical Systems is a collection of 26 selected papers from the scientific presentations made at the 9th European Workshop on Quantum Systems in Chemistry and Physics (QSCP-IX) held at Les Houches, France, in September 2004. This volume encompasses a spectrum of developing topics in which scientists place special emphasis on theoretical methods in the study of chemical and physical properties of various systems: Quantum Chemical Methods (including CC and DFT for excited states) Relativistic and Heavy-Element Systems (including radiative and nuclear effects)Complexes and Clusters (including metal complexes and clusters) Complex Systems (including quasicrystals, nanotubes and proteins).

Intermolecular Interactions

Intermolecular Interactions PDF Author: Ilya G. Kaplan
Publisher: John Wiley & Sons
ISBN: 0470863331
Category : Science
Languages : en
Pages : 380

Book Description
The subject of this book — intermolecular interactions — is as important in physics as in chemistry and molecular biology. Intermolecular interactions are responsible for the existence of liquids and solids in nature. They determine the physical and chemical properties of gases, liquids, and crystals, the stability of chemical complexes and biological compounds. In the first two chapters of this book, the detailed qualitative description of different types of intermolecular forces at large, intermediate and short-range distances is presented. For the first time in the monographic literature, the temperature dependence of the dispersion forces is discussed, and it is shown that at finite temperatures the famous Casimir-Polder asymptotic formula is correct only at narrow distance range. The author has aimed to make the presentation understandable to a broad scope of readers without oversimplification. In Chapter 3, the methods of quantitative calculation of the intermolecular interactions are discussed and modern achievements are presented. This chapter should be helpful for scientists performing computer calculations of many-electron systems. The last two chapters are devoted to the many-body effects and model potentials. More than 50 model potentials exploited for processing experimental data and computer simulation in different fields of physics, chemistry and molecular biology are represented. The widely used global optimisation methods: simulated annealing, diffusion equation method, basin-hopping algorithm, and genetic algorithm are described in detail. Significant efforts have been made to present the book in a self-sufficient way for readers. All the necessary mathematical apparatus, including vector and tensor calculus and the elements of the group theory, as well as the main methods used for quantal calculation of many-electron systems are presented in the appendices.