Author: Stephen P. Boyd
Publisher: Cambridge University Press
ISBN: 9780521833783
Category : Business & Economics
Languages : en
Pages : 744
Book Description
Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.
Convex Optimization
Author: Stephen P. Boyd
Publisher: Cambridge University Press
ISBN: 9780521833783
Category : Business & Economics
Languages : en
Pages : 744
Book Description
Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.
Publisher: Cambridge University Press
ISBN: 9780521833783
Category : Business & Economics
Languages : en
Pages : 744
Book Description
Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.
Convex Optimization in Signal Processing and Communications
Author: Daniel P. Palomar
Publisher: Cambridge University Press
ISBN: 0521762227
Category : Computers
Languages : en
Pages : 513
Book Description
Leading experts provide the theoretical underpinnings of the subject plus tutorials on a wide range of applications, from automatic code generation to robust broadband beamforming. Emphasis on cutting-edge research and formulating problems in convex form make this an ideal textbook for advanced graduate courses and a useful self-study guide.
Publisher: Cambridge University Press
ISBN: 0521762227
Category : Computers
Languages : en
Pages : 513
Book Description
Leading experts provide the theoretical underpinnings of the subject plus tutorials on a wide range of applications, from automatic code generation to robust broadband beamforming. Emphasis on cutting-edge research and formulating problems in convex form make this an ideal textbook for advanced graduate courses and a useful self-study guide.
Code Generation for Embedded Convex Optimization
Author: Jacob Elliot Mattingley
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 123
Book Description
Convex optimization is widely used, in many fields, but is nearly always constrained to problems solved in a few minutes or seconds, and even then, nearly always with a human in the loop. The advent of parser-solvers has made convex optimization simpler and more accessible, and greatly increased the number of people using convex optimization. Most current applications, however, are for the design of systems or analysis of data. It is possible to use convex optimization for real-time or embedded applications, where the optimization solver is a part of a larger system. Here, the optimization algorithm must find solutions much faster than a generic solver, and often has a hard, real-time deadline. Use in embedded applications additionally means that the solver cannot fail, and must be robust even in the presence of relatively poor quality data. For ease of embedding, the solver should be simple, and have minimal dependencies on external libraries. Convex optimization has been successfully applied in such settings in the past. However, they have usually necessitated a custom, hand-written solver. This requires signficant time and expertise, and has been a major factor preventing the adoption of convex optimization in embedded applications. This work describes the implementation and use of a prototype code generator for convex optimization, CVXGEN, that creates high-speed solvers automatically. Using the principles of disciplined convex programming, CVXGEN allows the user to describe an optimization problem in a convenient, high-level language, then receive code for compilation into an extremely fast, robust, embeddable solver.
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 123
Book Description
Convex optimization is widely used, in many fields, but is nearly always constrained to problems solved in a few minutes or seconds, and even then, nearly always with a human in the loop. The advent of parser-solvers has made convex optimization simpler and more accessible, and greatly increased the number of people using convex optimization. Most current applications, however, are for the design of systems or analysis of data. It is possible to use convex optimization for real-time or embedded applications, where the optimization solver is a part of a larger system. Here, the optimization algorithm must find solutions much faster than a generic solver, and often has a hard, real-time deadline. Use in embedded applications additionally means that the solver cannot fail, and must be robust even in the presence of relatively poor quality data. For ease of embedding, the solver should be simple, and have minimal dependencies on external libraries. Convex optimization has been successfully applied in such settings in the past. However, they have usually necessitated a custom, hand-written solver. This requires signficant time and expertise, and has been a major factor preventing the adoption of convex optimization in embedded applications. This work describes the implementation and use of a prototype code generator for convex optimization, CVXGEN, that creates high-speed solvers automatically. Using the principles of disciplined convex programming, CVXGEN allows the user to describe an optimization problem in a convenient, high-level language, then receive code for compilation into an extremely fast, robust, embeddable solver.
Hybrid Systems: Computation and Control
Author: Freek Wiedijk
Publisher: Springer
ISBN: 354036580X
Category : Computers
Languages : en
Pages : 569
Book Description
This volume contains the proceedings of the Sixth Workshop on Hybrid Systems: Computation and Control (HSCC 2003), which was held in Prague, during April 3–5, 2003. The Hybrid Systems workshops attract researchers interested in the modeling, analysis, control, and implementation of systems which involve the interaction of both discrete and continuous state dynamics. The newest results and latest developments in hybrid system models, formal methods for analysis and control, computational tools, as well as new applications and examples are presented at these annual meetings. The Sixth Workshop continued the series of workshops held in Grenoble, France (HART’97), Berkeley, California, USA (HSCC’98), Nijmegen, The Neth- lands (HSCC’99), Pittsburgh, Pennsylvania, USA (HSCC 2000), Rome, Italy (HSCC 2001), and Stanford, California, USA (HSCC 2002). Proceedings of these workshops have been published by Springer-Verlag in the Lecture Notes in C- puter Science (LNCS) series. This year we assembled a technical program committee with a broad expertise in formal methods in computer science, control theory, applied mathematics, and arti?cial intelligence. We received a set of 75 high-quality submitted papers. After detailed review and discussion of these papers by the program committee, 36 papers were accepted for presentation at the workshop, and the ?nal versions of these papers appear in this volume.
Publisher: Springer
ISBN: 354036580X
Category : Computers
Languages : en
Pages : 569
Book Description
This volume contains the proceedings of the Sixth Workshop on Hybrid Systems: Computation and Control (HSCC 2003), which was held in Prague, during April 3–5, 2003. The Hybrid Systems workshops attract researchers interested in the modeling, analysis, control, and implementation of systems which involve the interaction of both discrete and continuous state dynamics. The newest results and latest developments in hybrid system models, formal methods for analysis and control, computational tools, as well as new applications and examples are presented at these annual meetings. The Sixth Workshop continued the series of workshops held in Grenoble, France (HART’97), Berkeley, California, USA (HSCC’98), Nijmegen, The Neth- lands (HSCC’99), Pittsburgh, Pennsylvania, USA (HSCC 2000), Rome, Italy (HSCC 2001), and Stanford, California, USA (HSCC 2002). Proceedings of these workshops have been published by Springer-Verlag in the Lecture Notes in C- puter Science (LNCS) series. This year we assembled a technical program committee with a broad expertise in formal methods in computer science, control theory, applied mathematics, and arti?cial intelligence. We received a set of 75 high-quality submitted papers. After detailed review and discussion of these papers by the program committee, 36 papers were accepted for presentation at the workshop, and the ?nal versions of these papers appear in this volume.
Hybrid Systems: Computation and Control
Author: Oded Maler
Publisher: Springer Science & Business Media
ISBN: 3540009132
Category : Computers
Languages : en
Pages : 569
Book Description
This book constitues the refereed proceedings of the 6th International Workshop on Hybrid Systems: Computation and Control, HSCC 2003, held in Prague, Czech Republic, in April 2003. The 36 revised full papers presented were carefully reviewed and selected from 75 submissions. All current issues in hybrid systems are addressed including formal methods for analysis and control, computational tools, as well as innovative applications in various fields such as automotive control, the immune system, electrical circuits, operating systems, and human brains.
Publisher: Springer Science & Business Media
ISBN: 3540009132
Category : Computers
Languages : en
Pages : 569
Book Description
This book constitues the refereed proceedings of the 6th International Workshop on Hybrid Systems: Computation and Control, HSCC 2003, held in Prague, Czech Republic, in April 2003. The 36 revised full papers presented were carefully reviewed and selected from 75 submissions. All current issues in hybrid systems are addressed including formal methods for analysis and control, computational tools, as well as innovative applications in various fields such as automotive control, the immune system, electrical circuits, operating systems, and human brains.
Real-time PDE-constrained Optimization
Author: Lorenz T. Biegler
Publisher: SIAM
ISBN: 9780898718935
Category : Differential equations, Partial
Languages : en
Pages : 335
Book Description
Many engineering and scientific problems in design, control, and parameter estimation can be formulated as optimization problems that are governed by partial differential equations (PDEs). The complexities of the PDEs--and the requirement for rapid solution--pose significant difficulties. A particularly challenging class of PDE-constrained optimization problems is characterized by the need for real-time solution, i.e., in time scales that are sufficiently rapid to support simulation-based decision making. Real-Time PDE-Constrained Optimization, the first book devoted to real-time optimization for systems governed by PDEs, focuses on new formulations, methods, and algorithms needed to facilitate real-time, PDE-constrained optimization. In addition to presenting state-of-the-art algorithms and formulations, the text illustrates these algorithms with a diverse set of applications that includes problems in the areas of aerodynamics, biology, fluid dynamics, medicine, chemical processes, homeland security, and structural dynamics. Audience: readers who have expertise in simulation and are interested in incorporating optimization into their simulations, who have expertise in numerical optimization and are interested in adapting optimization methods to the class of infinite-dimensional simulation problems, or who have worked in "offline" optimization contexts and are interested in moving to "online" optimization.
Publisher: SIAM
ISBN: 9780898718935
Category : Differential equations, Partial
Languages : en
Pages : 335
Book Description
Many engineering and scientific problems in design, control, and parameter estimation can be formulated as optimization problems that are governed by partial differential equations (PDEs). The complexities of the PDEs--and the requirement for rapid solution--pose significant difficulties. A particularly challenging class of PDE-constrained optimization problems is characterized by the need for real-time solution, i.e., in time scales that are sufficiently rapid to support simulation-based decision making. Real-Time PDE-Constrained Optimization, the first book devoted to real-time optimization for systems governed by PDEs, focuses on new formulations, methods, and algorithms needed to facilitate real-time, PDE-constrained optimization. In addition to presenting state-of-the-art algorithms and formulations, the text illustrates these algorithms with a diverse set of applications that includes problems in the areas of aerodynamics, biology, fluid dynamics, medicine, chemical processes, homeland security, and structural dynamics. Audience: readers who have expertise in simulation and are interested in incorporating optimization into their simulations, who have expertise in numerical optimization and are interested in adapting optimization methods to the class of infinite-dimensional simulation problems, or who have worked in "offline" optimization contexts and are interested in moving to "online" optimization.
Hybrid Systems: Computation and Control
Author: Manfred Morari
Publisher: Springer Science & Business Media
ISBN: 3540251081
Category : Computers
Languages : en
Pages : 695
Book Description
This book constitutes the refereed proceedings of the 8th International Workshop on Hybrid Systems: Computation and Control, HSCC 2005, held in Zurich, Switzerland in March 2005. The 40 revised full papers presented together with 2 invited papers and the abstract of an invited talk were carefully reviewed and selected from 91 submissions. The papers focus on modeling, analysis, and implementation of dynamic and reactive systems involving both discrete and continuous behaviors. Among the topics addressed are tools for analysis and verification, control and optimization, modeling, engineering applications, and emerging directions in programming language support and implementation.
Publisher: Springer Science & Business Media
ISBN: 3540251081
Category : Computers
Languages : en
Pages : 695
Book Description
This book constitutes the refereed proceedings of the 8th International Workshop on Hybrid Systems: Computation and Control, HSCC 2005, held in Zurich, Switzerland in March 2005. The 40 revised full papers presented together with 2 invited papers and the abstract of an invited talk were carefully reviewed and selected from 91 submissions. The papers focus on modeling, analysis, and implementation of dynamic and reactive systems involving both discrete and continuous behaviors. Among the topics addressed are tools for analysis and verification, control and optimization, modeling, engineering applications, and emerging directions in programming language support and implementation.
Advanced Model Predictive Control for Autonomous Marine Vehicles
Author: Yang Shi
Publisher: Springer Nature
ISBN: 3031193547
Category : Technology & Engineering
Languages : en
Pages : 210
Book Description
This book provides a comprehensive overview of marine control system design related to underwater robotics applications. In particular, it presents novel optimization-based model predictive control strategies to solve control problems appearing in autonomous underwater vehicle applications. These novel approaches bring unique features, such as constraint handling, prioritization between multiple design objectives, optimal control performance, and robustness against disturbances and uncertainties, into the control system design. They therefore form a more general framework to design marine control systems and can be widely applied. Advanced Model Predictive Control for Autonomous Marine Vehicles balances theoretical rigor – providing thorough analysis and developing provably-correct design conditions – and application perspectives – addressing practical system constraints and implementation issues. Starting with a fixed-point positioning problem for a single vehicle and progressing to the trajectory-tracking and path-following problem of the vehicle, and then to the coordination control of a large-scale multi-robot team, this book addresses the motion control problems, increasing their level of challenge step-by-step. At each step, related subproblems such as path planning, thrust allocation, collision avoidance, and time constraints for real-time implementation are also discussed with solutions. In each chapter of this book, compact and illustrative examples are provided to demonstrate the design and implementation procedures. As a result, this book is useful for both theoretical study and practical engineering design, and the tools provided in the book are readily applicable for real-world implementation.
Publisher: Springer Nature
ISBN: 3031193547
Category : Technology & Engineering
Languages : en
Pages : 210
Book Description
This book provides a comprehensive overview of marine control system design related to underwater robotics applications. In particular, it presents novel optimization-based model predictive control strategies to solve control problems appearing in autonomous underwater vehicle applications. These novel approaches bring unique features, such as constraint handling, prioritization between multiple design objectives, optimal control performance, and robustness against disturbances and uncertainties, into the control system design. They therefore form a more general framework to design marine control systems and can be widely applied. Advanced Model Predictive Control for Autonomous Marine Vehicles balances theoretical rigor – providing thorough analysis and developing provably-correct design conditions – and application perspectives – addressing practical system constraints and implementation issues. Starting with a fixed-point positioning problem for a single vehicle and progressing to the trajectory-tracking and path-following problem of the vehicle, and then to the coordination control of a large-scale multi-robot team, this book addresses the motion control problems, increasing their level of challenge step-by-step. At each step, related subproblems such as path planning, thrust allocation, collision avoidance, and time constraints for real-time implementation are also discussed with solutions. In each chapter of this book, compact and illustrative examples are provided to demonstrate the design and implementation procedures. As a result, this book is useful for both theoretical study and practical engineering design, and the tools provided in the book are readily applicable for real-world implementation.
Convex Optimization
Author: Stephen Boyd
Publisher: Cambridge University Press
ISBN: 1107394007
Category : Mathematics
Languages : en
Pages : 744
Book Description
Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.
Publisher: Cambridge University Press
ISBN: 1107394007
Category : Mathematics
Languages : en
Pages : 744
Book Description
Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.
Lectures on Modern Convex Optimization
Author: Aharon Ben-Tal
Publisher: SIAM
ISBN: 0898714915
Category : Technology & Engineering
Languages : en
Pages : 500
Book Description
Here is a book devoted to well-structured and thus efficiently solvable convex optimization problems, with emphasis on conic quadratic and semidefinite programming. The authors present the basic theory underlying these problems as well as their numerous applications in engineering, including synthesis of filters, Lyapunov stability analysis, and structural design. The authors also discuss the complexity issues and provide an overview of the basic theory of state-of-the-art polynomial time interior point methods for linear, conic quadratic, and semidefinite programming. The book's focus on well-structured convex problems in conic form allows for unified theoretical and algorithmical treatment of a wide spectrum of important optimization problems arising in applications.
Publisher: SIAM
ISBN: 0898714915
Category : Technology & Engineering
Languages : en
Pages : 500
Book Description
Here is a book devoted to well-structured and thus efficiently solvable convex optimization problems, with emphasis on conic quadratic and semidefinite programming. The authors present the basic theory underlying these problems as well as their numerous applications in engineering, including synthesis of filters, Lyapunov stability analysis, and structural design. The authors also discuss the complexity issues and provide an overview of the basic theory of state-of-the-art polynomial time interior point methods for linear, conic quadratic, and semidefinite programming. The book's focus on well-structured convex problems in conic form allows for unified theoretical and algorithmical treatment of a wide spectrum of important optimization problems arising in applications.