Author: Richard Heiberger
Publisher: John Wiley & Sons
ISBN: 1119102871
Category : Mathematics
Languages : en
Pages : 704
Book Description
Addresses the statistical, mathematical, and computational aspects of the construction of packages and analysis of variance (ANOVA) programs. Includes a disk at the back of the book that contains all program codes in four languages, APL, BASIC, C, and FORTRAN. Presents illustrations of the dual space geometry for all designs, including confounded designs.
Computation for the Analysis of Designed Experiments
Author: Richard Heiberger
Publisher: John Wiley & Sons
ISBN: 1119102871
Category : Mathematics
Languages : en
Pages : 704
Book Description
Addresses the statistical, mathematical, and computational aspects of the construction of packages and analysis of variance (ANOVA) programs. Includes a disk at the back of the book that contains all program codes in four languages, APL, BASIC, C, and FORTRAN. Presents illustrations of the dual space geometry for all designs, including confounded designs.
Publisher: John Wiley & Sons
ISBN: 1119102871
Category : Mathematics
Languages : en
Pages : 704
Book Description
Addresses the statistical, mathematical, and computational aspects of the construction of packages and analysis of variance (ANOVA) programs. Includes a disk at the back of the book that contains all program codes in four languages, APL, BASIC, C, and FORTRAN. Presents illustrations of the dual space geometry for all designs, including confounded designs.
The Design and Analysis of Computer Experiments
Author: Thomas J. Santner
Publisher: Springer
ISBN: 1493988476
Category : Mathematics
Languages : en
Pages : 446
Book Description
This book describes methods for designing and analyzing experiments that are conducted using a computer code, a computer experiment, and, when possible, a physical experiment. Computer experiments continue to increase in popularity as surrogates for and adjuncts to physical experiments. Since the publication of the first edition, there have been many methodological advances and software developments to implement these new methodologies. The computer experiments literature has emphasized the construction of algorithms for various data analysis tasks (design construction, prediction, sensitivity analysis, calibration among others), and the development of web-based repositories of designs for immediate application. While it is written at a level that is accessible to readers with Masters-level training in Statistics, the book is written in sufficient detail to be useful for practitioners and researchers. New to this revised and expanded edition: • An expanded presentation of basic material on computer experiments and Gaussian processes with additional simulations and examples • A new comparison of plug-in prediction methodologies for real-valued simulator output • An enlarged discussion of space-filling designs including Latin Hypercube designs (LHDs), near-orthogonal designs, and nonrectangular regions • A chapter length description of process-based designs for optimization, to improve good overall fit, quantile estimation, and Pareto optimization • A new chapter describing graphical and numerical sensitivity analysis tools • Substantial new material on calibration-based prediction and inference for calibration parameters • Lists of software that can be used to fit models discussed in the book to aid practitioners
Publisher: Springer
ISBN: 1493988476
Category : Mathematics
Languages : en
Pages : 446
Book Description
This book describes methods for designing and analyzing experiments that are conducted using a computer code, a computer experiment, and, when possible, a physical experiment. Computer experiments continue to increase in popularity as surrogates for and adjuncts to physical experiments. Since the publication of the first edition, there have been many methodological advances and software developments to implement these new methodologies. The computer experiments literature has emphasized the construction of algorithms for various data analysis tasks (design construction, prediction, sensitivity analysis, calibration among others), and the development of web-based repositories of designs for immediate application. While it is written at a level that is accessible to readers with Masters-level training in Statistics, the book is written in sufficient detail to be useful for practitioners and researchers. New to this revised and expanded edition: • An expanded presentation of basic material on computer experiments and Gaussian processes with additional simulations and examples • A new comparison of plug-in prediction methodologies for real-valued simulator output • An enlarged discussion of space-filling designs including Latin Hypercube designs (LHDs), near-orthogonal designs, and nonrectangular regions • A chapter length description of process-based designs for optimization, to improve good overall fit, quantile estimation, and Pareto optimization • A new chapter describing graphical and numerical sensitivity analysis tools • Substantial new material on calibration-based prediction and inference for calibration parameters • Lists of software that can be used to fit models discussed in the book to aid practitioners
Statistical Analysis of Designed Experiments
Author: Helge Toutenburg
Publisher: Springer Science & Business Media
ISBN: 0387227725
Category : Mathematics
Languages : en
Pages : 507
Book Description
Unique in commencing with relatively simple statistical concepts and ideas found in most introductory statistical textbooks, this book goes on to cover more material useful for undergraduates and graduate in statistics and biostatistics.
Publisher: Springer Science & Business Media
ISBN: 0387227725
Category : Mathematics
Languages : en
Pages : 507
Book Description
Unique in commencing with relatively simple statistical concepts and ideas found in most introductory statistical textbooks, this book goes on to cover more material useful for undergraduates and graduate in statistics and biostatistics.
A First Course in Design and Analysis of Experiments
Author: Gary W. Oehlert
Publisher: W. H. Freeman
ISBN: 9780716735106
Category : Mathematics
Languages : en
Pages : 600
Book Description
Oehlert's text is suitable for either a service course for non-statistics graduate students or for statistics majors. Unlike most texts for the one-term grad/upper level course on experimental design, Oehlert's new book offers a superb balance of both analysis and design, presenting three practical themes to students: • when to use various designs • how to analyze the results • how to recognize various design options Also, unlike other older texts, the book is fully oriented toward the use of statistical software in analyzing experiments.
Publisher: W. H. Freeman
ISBN: 9780716735106
Category : Mathematics
Languages : en
Pages : 600
Book Description
Oehlert's text is suitable for either a service course for non-statistics graduate students or for statistics majors. Unlike most texts for the one-term grad/upper level course on experimental design, Oehlert's new book offers a superb balance of both analysis and design, presenting three practical themes to students: • when to use various designs • how to analyze the results • how to recognize various design options Also, unlike other older texts, the book is fully oriented toward the use of statistical software in analyzing experiments.
Practical Data Analysis for Designed Experiments
Author: Brian S. Yandell
Publisher: Routledge
ISBN: 1351422995
Category : Mathematics
Languages : en
Pages : 452
Book Description
Placing data in the context of the scientific discovery of knowledge through experimentation, Practical Data Analysis for Designed Experiments examines issues of comparing groups and sorting out factor effects and the consequences of imbalance and nesting, then works through more practical applications of the theory. Written in a modern and accessible manner, this book is a useful blend of theory and methods. Exercises included in the text are based on real experiments and real data.
Publisher: Routledge
ISBN: 1351422995
Category : Mathematics
Languages : en
Pages : 452
Book Description
Placing data in the context of the scientific discovery of knowledge through experimentation, Practical Data Analysis for Designed Experiments examines issues of comparing groups and sorting out factor effects and the consequences of imbalance and nesting, then works through more practical applications of the theory. Written in a modern and accessible manner, this book is a useful blend of theory and methods. Exercises included in the text are based on real experiments and real data.
Statistical Analysis of Designed Experiments
Author: Ajit C. Tamhane
Publisher: John Wiley & Sons
ISBN: 1118491432
Category : Science
Languages : en
Pages : 724
Book Description
A indispensable guide to understanding and designing modern experiments The tools and techniques of Design of Experiments (DOE) allow researchers to successfully collect, analyze, and interpret data across a wide array of disciplines. Statistical Analysis of Designed Experiments provides a modern and balanced treatment of DOE methodology with thorough coverage of the underlying theory and standard designs of experiments, guiding the reader through applications to research in various fields such as engineering, medicine, business, and the social sciences. The book supplies a foundation for the subject, beginning with basic concepts of DOE and a review of elementary normal theory statistical methods. Subsequent chapters present a uniform, model-based approach to DOE. Each design is presented in a comprehensive format and is accompanied by a motivating example, discussion of the applicability of the design, and a model for its analysis using statistical methods such as graphical plots, analysis of variance (ANOVA), confidence intervals, and hypothesis tests. Numerous theoretical and applied exercises are provided in each chapter, and answers to selected exercises are included at the end of the book. An appendix features three case studies that illustrate the challenges often encountered in real-world experiments, such as randomization, unbalanced data, and outliers. Minitab® software is used to perform analyses throughout the book, and an accompanying FTP site houses additional exercises and data sets. With its breadth of real-world examples and accessible treatment of both theory and applications, Statistical Analysis of Designed Experiments is a valuable book for experimental design courses at the upper-undergraduate and graduate levels. It is also an indispensable reference for practicing statisticians, engineers, and scientists who would like to further their knowledge of DOE.
Publisher: John Wiley & Sons
ISBN: 1118491432
Category : Science
Languages : en
Pages : 724
Book Description
A indispensable guide to understanding and designing modern experiments The tools and techniques of Design of Experiments (DOE) allow researchers to successfully collect, analyze, and interpret data across a wide array of disciplines. Statistical Analysis of Designed Experiments provides a modern and balanced treatment of DOE methodology with thorough coverage of the underlying theory and standard designs of experiments, guiding the reader through applications to research in various fields such as engineering, medicine, business, and the social sciences. The book supplies a foundation for the subject, beginning with basic concepts of DOE and a review of elementary normal theory statistical methods. Subsequent chapters present a uniform, model-based approach to DOE. Each design is presented in a comprehensive format and is accompanied by a motivating example, discussion of the applicability of the design, and a model for its analysis using statistical methods such as graphical plots, analysis of variance (ANOVA), confidence intervals, and hypothesis tests. Numerous theoretical and applied exercises are provided in each chapter, and answers to selected exercises are included at the end of the book. An appendix features three case studies that illustrate the challenges often encountered in real-world experiments, such as randomization, unbalanced data, and outliers. Minitab® software is used to perform analyses throughout the book, and an accompanying FTP site houses additional exercises and data sets. With its breadth of real-world examples and accessible treatment of both theory and applications, Statistical Analysis of Designed Experiments is a valuable book for experimental design courses at the upper-undergraduate and graduate levels. It is also an indispensable reference for practicing statisticians, engineers, and scientists who would like to further their knowledge of DOE.
The Design of Experiments
Author: Sir Ronald Aylmer Fisher
Publisher:
ISBN:
Category : Statistics
Languages : en
Pages : 248
Book Description
Publisher:
ISBN:
Category : Statistics
Languages : en
Pages : 248
Book Description
Understanding Statistics and Experimental Design
Author: Michael H. Herzog
Publisher: Springer
ISBN: 3030034992
Category : Science
Languages : en
Pages : 146
Book Description
This open access textbook provides the background needed to correctly use, interpret and understand statistics and statistical data in diverse settings. Part I makes key concepts in statistics readily clear. Parts I and II give an overview of the most common tests (t-test, ANOVA, correlations) and work out their statistical principles. Part III provides insight into meta-statistics (statistics of statistics) and demonstrates why experiments often do not replicate. Finally, the textbook shows how complex statistics can be avoided by using clever experimental design. Both non-scientists and students in Biology, Biomedicine and Engineering will benefit from the book by learning the statistical basis of scientific claims and by discovering ways to evaluate the quality of scientific reports in academic journals and news outlets.
Publisher: Springer
ISBN: 3030034992
Category : Science
Languages : en
Pages : 146
Book Description
This open access textbook provides the background needed to correctly use, interpret and understand statistics and statistical data in diverse settings. Part I makes key concepts in statistics readily clear. Parts I and II give an overview of the most common tests (t-test, ANOVA, correlations) and work out their statistical principles. Part III provides insight into meta-statistics (statistics of statistics) and demonstrates why experiments often do not replicate. Finally, the textbook shows how complex statistics can be avoided by using clever experimental design. Both non-scientists and students in Biology, Biomedicine and Engineering will benefit from the book by learning the statistical basis of scientific claims and by discovering ways to evaluate the quality of scientific reports in academic journals and news outlets.
Handbook of Design and Analysis of Experiments
Author: Angela Dean
Publisher: CRC Press
ISBN: 146650434X
Category : Mathematics
Languages : en
Pages : 946
Book Description
This carefully edited collection synthesizes the state of the art in the theory and applications of designed experiments and their analyses. It provides a detailed overview of the tools required for the optimal design of experiments and their analyses. The handbook covers many recent advances in the field, including designs for nonlinear models and algorithms applicable to a wide variety of design problems. It also explores the extensive use of experimental designs in marketing, the pharmaceutical industry, engineering and other areas.
Publisher: CRC Press
ISBN: 146650434X
Category : Mathematics
Languages : en
Pages : 946
Book Description
This carefully edited collection synthesizes the state of the art in the theory and applications of designed experiments and their analyses. It provides a detailed overview of the tools required for the optimal design of experiments and their analyses. The handbook covers many recent advances in the field, including designs for nonlinear models and algorithms applicable to a wide variety of design problems. It also explores the extensive use of experimental designs in marketing, the pharmaceutical industry, engineering and other areas.
Experimental Design for Formulation
Author: Wendell F. Smith
Publisher: SIAM
ISBN: 9780898718393
Category : Science
Languages : en
Pages : 386
Book Description
Many products, such as foods, personal-care products, beverages, and cleaning agents, are made by mixing ingredients together. This book describes a systematic methodology for formulating such products so that they perform according to one's goals, providing scientists and engineers with a fast track to the implementation of the methodology. Experimental Design for Formulation contains examples from a wide variety of fields and includes a discussion of how to design experiments for a mixture setting and how to fit and interpret models in a mixture setting. It also introduces process variables, the combining of mixture and nonmixture variables in a designed experiment, and the concept of collinearity and the possible problems that can result from its presence. Experimental Design for Formulation is a useful manual for the formulator and can also be used by a resident statistician to teach an in-house short course. Statistical proofs are largely absent, and the formulas that are presented are included to explain how the various software packages carry out the analysis. Many examples are given of output from statistical software packages, and the proper interpretation of computer output is emphasized. Other topics presented include a discussion of an effect in a mixture setting, the presentation of elementary optimization methods, and multiple-response optimization wherein one seeks to optimize more than one response.
Publisher: SIAM
ISBN: 9780898718393
Category : Science
Languages : en
Pages : 386
Book Description
Many products, such as foods, personal-care products, beverages, and cleaning agents, are made by mixing ingredients together. This book describes a systematic methodology for formulating such products so that they perform according to one's goals, providing scientists and engineers with a fast track to the implementation of the methodology. Experimental Design for Formulation contains examples from a wide variety of fields and includes a discussion of how to design experiments for a mixture setting and how to fit and interpret models in a mixture setting. It also introduces process variables, the combining of mixture and nonmixture variables in a designed experiment, and the concept of collinearity and the possible problems that can result from its presence. Experimental Design for Formulation is a useful manual for the formulator and can also be used by a resident statistician to teach an in-house short course. Statistical proofs are largely absent, and the formulas that are presented are included to explain how the various software packages carry out the analysis. Many examples are given of output from statistical software packages, and the proper interpretation of computer output is emphasized. Other topics presented include a discussion of an effect in a mixture setting, the presentation of elementary optimization methods, and multiple-response optimization wherein one seeks to optimize more than one response.