Author: Geng Zhang
Publisher:
ISBN:
Category :
Languages : en
Pages : 280
Book Description
Component-based and Parametric Reduced-order Modeling Methods for Vibration Analysis of Complex Structures
Advances in Vibration Engineering and Structural Dynamics
Author: Francisco Beltran-Carbajal
Publisher: BoD – Books on Demand
ISBN: 953510845X
Category : Technology & Engineering
Languages : en
Pages : 382
Book Description
The aim of this book is to present recent and innovative advances on research studies and engineering applications in important areas of vibration engineering and structural dynamics. The fourteen chapters of the book cover a wide range of interesting issues related to modelling, rotordynamics, vibration control, estimation and identification, modal analysis, dynamic structures, finite element analysis, numerical methods and other practical engineering applications and theoretical developments on this very broad matter. The audience of the book includes researchers, professors, engineers, practitioners, engineering students and new comers in a variety of disciplines seeking to know more about the state of the art, challenging open problems and innovative solution proposals in vibration engineering and structural dynamics.
Publisher: BoD – Books on Demand
ISBN: 953510845X
Category : Technology & Engineering
Languages : en
Pages : 382
Book Description
The aim of this book is to present recent and innovative advances on research studies and engineering applications in important areas of vibration engineering and structural dynamics. The fourteen chapters of the book cover a wide range of interesting issues related to modelling, rotordynamics, vibration control, estimation and identification, modal analysis, dynamic structures, finite element analysis, numerical methods and other practical engineering applications and theoretical developments on this very broad matter. The audience of the book includes researchers, professors, engineers, practitioners, engineering students and new comers in a variety of disciplines seeking to know more about the state of the art, challenging open problems and innovative solution proposals in vibration engineering and structural dynamics.
Component-Based Vibration Modeling Methods for Fast Reanalysis and Design of Complex Structures
Interpolatory Methods for Model Reduction
Author: A. C. Antoulas
Publisher: SIAM
ISBN: 1611976081
Category : Mathematics
Languages : en
Pages : 245
Book Description
Dynamical systems are a principal tool in the modeling, prediction, and control of a wide range of complex phenomena. As the need for improved accuracy leads to larger and more complex dynamical systems, direct simulation often becomes the only available strategy for accurate prediction or control, inevitably creating a considerable burden on computational resources. This is the main context where one considers model reduction, seeking to replace large systems of coupled differential and algebraic equations that constitute high fidelity system models with substantially fewer equations that are crafted to control the loss of fidelity that order reduction may induce in the system response. Interpolatory methods are among the most widely used model reduction techniques, and Interpolatory Methods for Model Reduction is the first comprehensive analysis of this approach available in a single, extensive resource. It introduces state-of-the-art methods reflecting significant developments over the past two decades, covering both classical projection frameworks for model reduction and data-driven, nonintrusive frameworks. This textbook is appropriate for a wide audience of engineers and other scientists working in the general areas of large-scale dynamical systems and data-driven modeling of dynamics.
Publisher: SIAM
ISBN: 1611976081
Category : Mathematics
Languages : en
Pages : 245
Book Description
Dynamical systems are a principal tool in the modeling, prediction, and control of a wide range of complex phenomena. As the need for improved accuracy leads to larger and more complex dynamical systems, direct simulation often becomes the only available strategy for accurate prediction or control, inevitably creating a considerable burden on computational resources. This is the main context where one considers model reduction, seeking to replace large systems of coupled differential and algebraic equations that constitute high fidelity system models with substantially fewer equations that are crafted to control the loss of fidelity that order reduction may induce in the system response. Interpolatory methods are among the most widely used model reduction techniques, and Interpolatory Methods for Model Reduction is the first comprehensive analysis of this approach available in a single, extensive resource. It introduces state-of-the-art methods reflecting significant developments over the past two decades, covering both classical projection frameworks for model reduction and data-driven, nonintrusive frameworks. This textbook is appropriate for a wide audience of engineers and other scientists working in the general areas of large-scale dynamical systems and data-driven modeling of dynamics.
Sub-structure Coupling for Dynamic Analysis
Author: Hector Jensen
Publisher: Springer
ISBN: 3030128199
Category : Science
Languages : en
Pages : 231
Book Description
This book combines a model reduction technique with an efficient parametrization scheme for the purpose of solving a class of complex and computationally expensive simulation-based problems involving finite element models. These problems, which have a wide range of important applications in several engineering fields, include reliability analysis, structural dynamic simulation, sensitivity analysis, reliability-based design optimization, Bayesian model validation, uncertainty quantification and propagation, etc. The solution of this type of problems requires a large number of dynamic re-analyses. To cope with this difficulty, a model reduction technique known as substructure coupling for dynamic analysis is considered. While the use of reduced order models alleviates part of the computational effort, their repetitive generation during the simulation processes can be computational expensive due to the substantial computational overhead that arises at the substructure level. In this regard, an efficient finite element model parametrization scheme is considered. When the division of the structural model is guided by such a parametrization scheme, the generation of a small number of reduced order models is sufficient to run the large number of dynamic re-analyses. Thus, a drastic reduction in computational effort is achieved without compromising the accuracy of the results. The capabilities of the developed procedures are demonstrated in a number of simulation-based problems involving uncertainty.
Publisher: Springer
ISBN: 3030128199
Category : Science
Languages : en
Pages : 231
Book Description
This book combines a model reduction technique with an efficient parametrization scheme for the purpose of solving a class of complex and computationally expensive simulation-based problems involving finite element models. These problems, which have a wide range of important applications in several engineering fields, include reliability analysis, structural dynamic simulation, sensitivity analysis, reliability-based design optimization, Bayesian model validation, uncertainty quantification and propagation, etc. The solution of this type of problems requires a large number of dynamic re-analyses. To cope with this difficulty, a model reduction technique known as substructure coupling for dynamic analysis is considered. While the use of reduced order models alleviates part of the computational effort, their repetitive generation during the simulation processes can be computational expensive due to the substantial computational overhead that arises at the substructure level. In this regard, an efficient finite element model parametrization scheme is considered. When the division of the structural model is guided by such a parametrization scheme, the generation of a small number of reduced order models is sufficient to run the large number of dynamic re-analyses. Thus, a drastic reduction in computational effort is achieved without compromising the accuracy of the results. The capabilities of the developed procedures are demonstrated in a number of simulation-based problems involving uncertainty.
Model Reduction of Parametrized Systems
Author: Peter Benner
Publisher: Springer
ISBN: 3319587862
Category : Mathematics
Languages : en
Pages : 503
Book Description
The special volume offers a global guide to new concepts and approaches concerning the following topics: reduced basis methods, proper orthogonal decomposition, proper generalized decomposition, approximation theory related to model reduction, learning theory and compressed sensing, stochastic and high-dimensional problems, system-theoretic methods, nonlinear model reduction, reduction of coupled problems/multiphysics, optimization and optimal control, state estimation and control, reduced order models and domain decomposition methods, Krylov-subspace and interpolatory methods, and applications to real industrial and complex problems. The book represents the state of the art in the development of reduced order methods. It contains contributions from internationally respected experts, guaranteeing a wide range of expertise and topics. Further, it reflects an important effor t, carried out over the last 12 years, to build a growing research community in this field. Though not a textbook, some of the chapters can be used as reference materials or lecture notes for classes and tutorials (doctoral schools, master classes).
Publisher: Springer
ISBN: 3319587862
Category : Mathematics
Languages : en
Pages : 503
Book Description
The special volume offers a global guide to new concepts and approaches concerning the following topics: reduced basis methods, proper orthogonal decomposition, proper generalized decomposition, approximation theory related to model reduction, learning theory and compressed sensing, stochastic and high-dimensional problems, system-theoretic methods, nonlinear model reduction, reduction of coupled problems/multiphysics, optimization and optimal control, state estimation and control, reduced order models and domain decomposition methods, Krylov-subspace and interpolatory methods, and applications to real industrial and complex problems. The book represents the state of the art in the development of reduced order methods. It contains contributions from internationally respected experts, guaranteeing a wide range of expertise and topics. Further, it reflects an important effor t, carried out over the last 12 years, to build a growing research community in this field. Though not a textbook, some of the chapters can be used as reference materials or lecture notes for classes and tutorials (doctoral schools, master classes).
Proceedings of the ASME Design Engineering Division
Computational Mechanics
Author: Zhenhan Yao
Publisher: 清华大学出版社有限公司
ISBN: 9787302093411
Category : Engineering design
Languages : en
Pages : 712
Book Description
Publisher: 清华大学出版社有限公司
ISBN: 9787302093411
Category : Engineering design
Languages : en
Pages : 712
Book Description
Dynamic Substructures, Volume 4
Author: Matthew S. Allen
Publisher: Springer Nature
ISBN: 3030759105
Category : Technology & Engineering
Languages : en
Pages : 107
Book Description
Dynamic Substructures, Volume 4: Proceedings of the 39th IMAC, A Conference and Exposition on Structural Dynamics, 2021, the fourth volume of nine from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of the Dynamics of Coupled Structures, including papers on: Methods for Dynamic Substructures Applications for Dynamic Substructures Interfaces & Substructuring Frequency Based Substructuring Transfer Path Analysis
Publisher: Springer Nature
ISBN: 3030759105
Category : Technology & Engineering
Languages : en
Pages : 107
Book Description
Dynamic Substructures, Volume 4: Proceedings of the 39th IMAC, A Conference and Exposition on Structural Dynamics, 2021, the fourth volume of nine from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of the Dynamics of Coupled Structures, including papers on: Methods for Dynamic Substructures Applications for Dynamic Substructures Interfaces & Substructuring Frequency Based Substructuring Transfer Path Analysis