COMPARATIVE STUDY AMONG HYBRID GROUND SOURCE HEAT PUMP SYSTEM, COMPLETE GROUND SOURCE HEAT PUMP AND CONVENTIONAL HVAC SYSTEM. PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download COMPARATIVE STUDY AMONG HYBRID GROUND SOURCE HEAT PUMP SYSTEM, COMPLETE GROUND SOURCE HEAT PUMP AND CONVENTIONAL HVAC SYSTEM. PDF full book. Access full book title COMPARATIVE STUDY AMONG HYBRID GROUND SOURCE HEAT PUMP SYSTEM, COMPLETE GROUND SOURCE HEAT PUMP AND CONVENTIONAL HVAC SYSTEM. by . Download full books in PDF and EPUB format.

COMPARATIVE STUDY AMONG HYBRID GROUND SOURCE HEAT PUMP SYSTEM, COMPLETE GROUND SOURCE HEAT PUMP AND CONVENTIONAL HVAC SYSTEM.

COMPARATIVE STUDY AMONG HYBRID GROUND SOURCE HEAT PUMP SYSTEM, COMPLETE GROUND SOURCE HEAT PUMP AND CONVENTIONAL HVAC SYSTEM. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
In this paper, a hotel with hybrid geothermal heat pump system (HyGSHP) in the Pensacola is selected and simulated by the transient simulation software package TRNSYS [1]. To verify the simulation results, the validations are conducted by using the monthly average entering water temperature, monthly facility consumption data, and etc. And three types of HVAC systems are compared based on the same building model and HVAC system capacity. The results are presented to show the advantages and disadvantages of HyGSHP compared with the other two systems in terms of energy consumptions, life cycle cost analysis.

COMPARATIVE STUDY AMONG HYBRID GROUND SOURCE HEAT PUMP SYSTEM, COMPLETE GROUND SOURCE HEAT PUMP AND CONVENTIONAL HVAC SYSTEM.

COMPARATIVE STUDY AMONG HYBRID GROUND SOURCE HEAT PUMP SYSTEM, COMPLETE GROUND SOURCE HEAT PUMP AND CONVENTIONAL HVAC SYSTEM. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
In this paper, a hotel with hybrid geothermal heat pump system (HyGSHP) in the Pensacola is selected and simulated by the transient simulation software package TRNSYS [1]. To verify the simulation results, the validations are conducted by using the monthly average entering water temperature, monthly facility consumption data, and etc. And three types of HVAC systems are compared based on the same building model and HVAC system capacity. The results are presented to show the advantages and disadvantages of HyGSHP compared with the other two systems in terms of energy consumptions, life cycle cost analysis.

Comparative Energy and Cost Analysis Between Conventional HVAC Systems and Geothermal Heat Pump Systems

Comparative Energy and Cost Analysis Between Conventional HVAC Systems and Geothermal Heat Pump Systems PDF Author: David D. Vanderburg
Publisher:
ISBN: 9781423511694
Category : Ground source heat pump systems
Languages : en
Pages : 244

Book Description
To sustain the United States current affluence and strength, the U.S. Government has encouraged energy conservation through executive orders, federal and local laws, and consumer education. A substantial reduction in U.S. energy consumption could be realized by using geothermal heat pumps to heat and cool buildings throughout the U.S., though initial installation cost are a deterrent. This thesis uses Monte Carlo simulation to predict energy consumption, life cycle cost and payback period for the vertical closed-loop ground source heat pump (GSHP) relative to conventional heating ventilation and air conditioning (HVAC) systems: air-source heat pumps (ASHP), air-cooled air conditioning with either natural gas, fuel oil, or liquid petroleum gas furnaces, or with electrical resistance heating. The Monte Carlo simulation is performed for a standard commercial office building within each of the 48 continental states. Regardless of the conventional HVAC system chosen, the simulation shows that for each state the GSHP has the highest probability of using less energy and having a lower operating and life cycle cost than conventional HVAC systems; however, initial installation cost are typically twice that of conventional HVAC systems and payback periods vary greatly depending on site conditions. The average 50th percentile GSHP payback period in the U.S. was 7.5 years compared against the ASHP and 9.2 years compared against the air-cooled air conditioning with natural gas furnace. However, these values vary greatly depending on location and are most sensitivity to ground thermal conductivity, utility prices, and HVAC efficiency ratings. Under the right conditions, payback for geothermal heat pumps can be much shorter and the model developed in this research can help predict energy savings and payback periods for a given site.

Heating and Cooling with Ground-Source Heat Pumps in Cold and Moderate Climates

Heating and Cooling with Ground-Source Heat Pumps in Cold and Moderate Climates PDF Author: Vasile Minea
Publisher: CRC Press
ISBN: 1000564258
Category : Science
Languages : en
Pages : 443

Book Description
Heating and Cooling with Ground-Source Heat Pumps in Cold and Moderate Climates: Design Principles, Potential Applications and Case Studies focuses on applications and cases studies of ground-source heat pumps in moderate and cold climates. It details technical aspects (such as materials, thermal fluid carriers and pumping, and drilling/trenching technologies), as well as the most common and uncommon application fields for basic system configurations. The principles of system integrations and applications in moderate and cold climates (such as hybrid, solar-assisted, thermo-syphon, foundation, mines, snow melting, district heating and cooling ground-source heat pump systems, etc.) are also presented, each followed by case studies. Based on the author's more than 30 years of technical experience Discusses ground-source heat pump technologies that can be successfully applied in moderate and cold climates Presents several case studies, including successful energy results, as well as the main lessons learned This work is aimed at designers of HVAC systems, as well as geological, mechanical, and chemical engineers implementing environmentally-friendly heating and cooling technologies for buildings.

Advances in Ground-Source Heat Pump Systems

Advances in Ground-Source Heat Pump Systems PDF Author: Simon Rees
Publisher: Woodhead Publishing
ISBN: 0081003226
Category : Technology & Engineering
Languages : en
Pages : 484

Book Description
Advances in Ground-Source Heat Pump Systems relates the latest information on source heat pumps (GSHPs), the types of heating and/or cooling systems that transfer heat from, or to, the ground, or, less commonly, a body of water. As one of the fastest growing renewable energy technologies, they are amongst the most energy efficient systems for space heating, cooling, and hot water production, with significant potential for a reduction in building carbon emissions. The book provides an authoritative overview of developments in closed loop GSHP systems, surface water, open loop systems, and related thermal energy storage systems, addressing the different technologies and component methods of analysis and optimization, among other subjects. Chapters on building integration and hybrid systems complete the volume. - Provides the geological aspects and building integration covered together in one convenient volume - Includes chapters on hybrid systems - Presents carefully selected chapters that cover areas in which there is significant ongoing research - Addresses geothermal heat pumps in both heating and cooling modes

Heating and Cooling with Ground-Source Heat Pumps in Moderate and Cold Climates, Two-Volume Set

Heating and Cooling with Ground-Source Heat Pumps in Moderate and Cold Climates, Two-Volume Set PDF Author: Vasile Minea
Publisher: CRC Press
ISBN: 1000564584
Category : Technology & Engineering
Languages : en
Pages : 841

Book Description
Heating and Cooling with Ground-Source Heat Pumps in Moderate and Cold Climates, Two-Volume Set focuses on the use of very low-temperature geothermal energy for heating and cooling residential, institutional, and industrial buildings, and aims to increase the design community’s awareness and knowledge of the benefits, design, and installation requirements of commercial/institutional building ground-source heat pumps (GSHP). This set helps readers assess applicability, select a GSHP system type, and estimate building thermal load to ensure proper size for ground-source subsystems, appropriate brine and groundwater flow rates, and apt design of building closed-loops with distributed or central geothermal heat pumps. The first volume addresses fundamentals and design principles of vertical and horizontal indirect and direct expansion closed-loop, as well as ground- and surface-water ground-source heat pump systems. It explains the thermodynamic aspects of mechanical and thermochemical compression cycles of geothermal heat pumps, as well as the energetic, economic, and environmental aspects associated with the use of ground-source heat pump systems for heating and cooling residential and commercial/institutional buildings in moderate and cold climates. The second volume focuses on applications and cases studies of ground-source heat pumps in moderate and cold climates. It details technical aspects, as well as the most common and uncommon application fields of basic system configurations. The principles of system integrations and applications in moderate and cold climates are also presented, each followed by case studies. This comprehensive work is aimed at designers of HVAC systems, as well as geological, mechanical, and chemical engineers implementing environmentally-friendly heating and cooling technologies for buildings.

Optimizing the Operation of a Hybrid Ground Source Heat Pump System Under Uncertainty

Optimizing the Operation of a Hybrid Ground Source Heat Pump System Under Uncertainty PDF Author: Hansani Weeratunge
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Hybrid renewable energy systems that combine conventional heating, ventilation, and air conditioning (HVAC) systems and ground source heat pumps (GSHP) have become an attractive alternative for conventional HVAC systems due to their higher cost and energy efficiency.Furthermore, control strategies that exploit predictive information about weather and building occupants' activity can further reduce the system operating costs. This study proposes a Stochastic Model Predictive Control (SMPC) for hybrid GSHP systems considering the stochastic nature of the building space heating demand. In SMPC, near-optimal control decisions are found for the current and future states of the system through the application of Regression Monte-Carlo techniques. We compare the performance of SMPC to that gained by using setpoint Control (SPC) and Model Predictive Control (MPC) which uses a deterministic forecast. It is found that by taking uncertainty into account via SMPC, the operating cost reduction compared to SPC is approximately equal to half of the cost-optimality gap between SPC and an idealized controller that is represented by MPC with perfect future information. Furthermore, we find that MPC using a forecast based on expected values leads to greater operating costs compared to the simpler SPC strategy when variability and uncertainty are present.

Residential Ground Source Heat Pump Design Guide

Residential Ground Source Heat Pump Design Guide PDF Author:
Publisher:
ISBN:
Category : Heat pumps
Languages : en
Pages : 16

Book Description


Geothermal Heating and Cooling

Geothermal Heating and Cooling PDF Author: Stephen P. Kavanaugh
Publisher:
ISBN: 9781936504855
Category : Ground source heat pump systems
Languages : en
Pages : 0

Book Description
Geothermal Heating and Cooling is a complete revision of Ground-Source Heat Pumps: Design of Geothermal Systems for Commercial and Institutional Buildings, which is recognized as the primary reference for nonresidential ground-source heat pump (GSHP) installations. This new work takes advantage of the many lessons learned since the time of the original publication, when GSHPs were primarily residential applications. Many improvements have evolved, and performance data, both positive and negative, is now available to guide the development of best practices. This essential guide for HVAC design engineers, design-build contractors, GSHP subcontractors, and energy/construction managers also provides building owners and architects with insights into characteristics of quality engineering firms and the information that should be provided by design firms competing for GSHP projects.This revision draws on new ASHRAE and industry research in critical areas, as well as measured data from long-term installations and optimized installation practices used by high-production GSHP contractors. Nearly all chapters and appendices were completely rewritten, and they include coverage of closed-loop ground (ground-coupled), groundwater, and surface-water systems plus GSHP equipment and piping. Additional information on site characterization has been added, including a new hydrogeological chapter. Another new chapter contains results of recent field studies, energy and demand characteristics, and updated information to optimize GSHP system cost. While other publications deal primarily with ground-coupled heat pumps, this text includes detailed coverage of groundwater, surface-water, and GSHP costs.Tables, graphs, and equations are provided in both Inch-Pound (I-P) and International System (SI) units. As a bonus, supplemental Microsoft® Excel® macro-enabled spreadsheets for a variety of GSHP calculations accompany the text.

Shallow Geothermal Systems

Shallow Geothermal Systems PDF Author: Deutsche Gesellschaft für Geotechnik
Publisher: John Wiley & Sons
ISBN: 3433031401
Category : Technology & Engineering
Languages : en
Pages : 306

Book Description
The recommendations summarise the state of the art. Their aim is the proper exploitation of the ground for geothermal purposes without adversely affecting the ground or the groundwater on the one hand and the operation of the system and nearby buildings on the other. The recommendations should be used during consulting, design, installation and operation in order to achieve optimum and sustainable use of the ground at a specific location. Authorities responsible for supervising and approving projects can use the recommendations as a guide when taking decisions and making stipulations. The Geothermal Energy Study Group was set up in Bochum in 2004 and became the joint DGGV/DGGT study group in 2007. Some 20 specialists from universities, authorities and engineering consultants are active in the group and meet two or three times a year.

Dynamic Modeling and Control of Hybrid Ground Source Heat Pump Systems

Dynamic Modeling and Control of Hybrid Ground Source Heat Pump Systems PDF Author: Chang Chen
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Ground source heat pump (GSHP) systems are one of the fastest growing applications of renewable energy in the world with annual increases of 10% over the past decade. GSHPs are potentially more efficient than conventional air-to-air heat pumps as they use the relatively constant temperature of the geothermal energy to provide heating or cooling to conditioned rooms at desired temperature and relative humidity. More importantly, GSHP systems can in fact achieve significant energy savings year round, compared to conventional HVAC systems. A hybrid ground source heat pump (HGSHP) system is designed in this study to heat and cool an office building all the year round. Dynamic models of each component of the heat pump system are developed for simulations of heat transfer between each component of the HGSHP system and for control strategy design and analysis. A detailed multiple-load aggregation algorithm (MLAA) is adapted from the literature to precisely account for and calculate the transient heat conduction in vertical ground heat exchangers with different yearly, monthly, and daily pulses of heat. Feedback PI controllers for heat pump units and On/Off controllers for boiler and cooling tower are designed and utilized to match anticipated building loads and to analyze transient response characteristics of such outputs as water flow rate and air flow rate of heat pumps, return water temperature and supply air temperature of heat pumps, water temperatures of ground loops and heat exchangers, water temperature of boiler or cooling tower, and fuel flow rate of boiler. Control strategies for the HGSHP system in both heating and cooling modes of operation are also introduced to study the system responses. With the usage of On/Off controllers and well-tuned PI controllers, as well as optimal control strategies for heating and cooling operations, the HGSHP system is expected to give better operating performance and efficiency. As a result, noticeable energy savings can be achieved in both heating and cooling modes of operation.