Author: Douglas B. West
Publisher: Cambridge University Press
ISBN: 1107058589
Category : Mathematics
Languages : en
Pages : 990
Book Description
This is the most readable and thorough graduate textbook and reference for combinatorics, covering enumeration, graphs, sets, and methods.
Combinatorial Mathematics
Author: Douglas B. West
Publisher: Cambridge University Press
ISBN: 1107058589
Category : Mathematics
Languages : en
Pages : 990
Book Description
This is the most readable and thorough graduate textbook and reference for combinatorics, covering enumeration, graphs, sets, and methods.
Publisher: Cambridge University Press
ISBN: 1107058589
Category : Mathematics
Languages : en
Pages : 990
Book Description
This is the most readable and thorough graduate textbook and reference for combinatorics, covering enumeration, graphs, sets, and methods.
Applied Combinatorial Mathematics
Author: George Pólya
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 640
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 640
Book Description
Handbook of Discrete and Combinatorial Mathematics
Author: Kenneth H. Rosen
Publisher: CRC Press
ISBN: 135164405X
Category : Mathematics
Languages : en
Pages : 1611
Book Description
Handbook of Discrete and Combinatorial Mathematics provides a comprehensive reference volume for mathematicians, computer scientists, engineers, as well as students and reference librarians. The material is presented so that key information can be located and used quickly and easily. Each chapter includes a glossary. Individual topics are covered in sections and subsections within chapters, each of which is organized into clearly identifiable parts: definitions, facts, and examples. Examples are provided to illustrate some of the key definitions, facts, and algorithms. Some curious and entertaining facts and puzzles are also included. Readers will also find an extensive collection of biographies. This second edition is a major revision. It includes extensive additions and updates. Since the first edition appeared in 1999, many new discoveries have been made and new areas have grown in importance, which are covered in this edition.
Publisher: CRC Press
ISBN: 135164405X
Category : Mathematics
Languages : en
Pages : 1611
Book Description
Handbook of Discrete and Combinatorial Mathematics provides a comprehensive reference volume for mathematicians, computer scientists, engineers, as well as students and reference librarians. The material is presented so that key information can be located and used quickly and easily. Each chapter includes a glossary. Individual topics are covered in sections and subsections within chapters, each of which is organized into clearly identifiable parts: definitions, facts, and examples. Examples are provided to illustrate some of the key definitions, facts, and algorithms. Some curious and entertaining facts and puzzles are also included. Readers will also find an extensive collection of biographies. This second edition is a major revision. It includes extensive additions and updates. Since the first edition appeared in 1999, many new discoveries have been made and new areas have grown in importance, which are covered in this edition.
Combinatorial Mathematics and Its Applications
Author: Raj Chandra Bose
Publisher:
ISBN:
Category : Combinatorial analysis
Languages : en
Pages : 632
Book Description
Publisher:
ISBN:
Category : Combinatorial analysis
Languages : en
Pages : 632
Book Description
Discrete and Combinatorial Mathematics
Author: Ralph P. Grimaldi
Publisher:
ISBN: 9781292022796
Category : Combinatorial analysis
Languages : en
Pages : 930
Book Description
This fifth edition continues to improve on the features that have made it the market leader. The text offers a flexible organization, enabling instructors to adapt the book to their particular courses. The book is both complete and careful, and it continues to maintain its emphasis on algorithms and applications. Excellent exercise sets allow students to perfect skills as they practice. This new edition continues to feature numerous computer science applications-making this the ideal text for preparing students for advanced study.
Publisher:
ISBN: 9781292022796
Category : Combinatorial analysis
Languages : en
Pages : 930
Book Description
This fifth edition continues to improve on the features that have made it the market leader. The text offers a flexible organization, enabling instructors to adapt the book to their particular courses. The book is both complete and careful, and it continues to maintain its emphasis on algorithms and applications. Excellent exercise sets allow students to perfect skills as they practice. This new edition continues to feature numerous computer science applications-making this the ideal text for preparing students for advanced study.
Geometric Etudes in Combinatorial Mathematics
Author: Alexander Soifer
Publisher: Springer Science & Business Media
ISBN: 0387754695
Category : Mathematics
Languages : en
Pages : 292
Book Description
Geometric Etudes in Combinatorial Mathematics is not only educational, it is inspirational. This distinguished mathematician captivates the young readers, propelling them to search for solutions of life’s problems—problems that previously seemed hopeless. Review from the first edition: The etudes presented here are not simply those of Czerny, but are better compared to the etudes of Chopin, not only technically demanding and addressed to a variety of specific skills, but at the same time possessing an exceptional beauty that characterizes the best of art...Keep this book at hand as you plan your next problem solving seminar. —The American Mathematical Monthly
Publisher: Springer Science & Business Media
ISBN: 0387754695
Category : Mathematics
Languages : en
Pages : 292
Book Description
Geometric Etudes in Combinatorial Mathematics is not only educational, it is inspirational. This distinguished mathematician captivates the young readers, propelling them to search for solutions of life’s problems—problems that previously seemed hopeless. Review from the first edition: The etudes presented here are not simply those of Czerny, but are better compared to the etudes of Chopin, not only technically demanding and addressed to a variety of specific skills, but at the same time possessing an exceptional beauty that characterizes the best of art...Keep this book at hand as you plan your next problem solving seminar. —The American Mathematical Monthly
Combinatorics
Author: Pavle Mladenović
Publisher: Springer
ISBN: 3030008312
Category : Mathematics
Languages : en
Pages : 372
Book Description
This text provides a theoretical background for several topics in combinatorial mathematics, such as enumerative combinatorics (including partitions and Burnside's lemma), magic and Latin squares, graph theory, extremal combinatorics, mathematical games and elementary probability. A number of examples are given with explanations while the book also provides more than 300 exercises of different levels of difficulty that are arranged at the end of each chapter, and more than 130 additional challenging problems, including problems from mathematical olympiads. Solutions or hints to all exercises and problems are included. The book can be used by secondary school students preparing for mathematical competitions, by their instructors, and by undergraduate students. The book may also be useful for graduate students and for researchers that apply combinatorial methods in different areas.
Publisher: Springer
ISBN: 3030008312
Category : Mathematics
Languages : en
Pages : 372
Book Description
This text provides a theoretical background for several topics in combinatorial mathematics, such as enumerative combinatorics (including partitions and Burnside's lemma), magic and Latin squares, graph theory, extremal combinatorics, mathematical games and elementary probability. A number of examples are given with explanations while the book also provides more than 300 exercises of different levels of difficulty that are arranged at the end of each chapter, and more than 130 additional challenging problems, including problems from mathematical olympiads. Solutions or hints to all exercises and problems are included. The book can be used by secondary school students preparing for mathematical competitions, by their instructors, and by undergraduate students. The book may also be useful for graduate students and for researchers that apply combinatorial methods in different areas.
Introduction to Combinatorics
Author: Walter D. Wallis
Publisher: CRC Press
ISBN: 1498777635
Category : Mathematics
Languages : en
Pages : 424
Book Description
What Is Combinatorics Anyway? Broadly speaking, combinatorics is the branch of mathematics dealing with different ways of selecting objects from a set or arranging objects. It tries to answer two major kinds of questions, namely, counting questions: how many ways can a selection or arrangement be chosen with a particular set of properties; and structural questions: does there exist a selection or arrangement of objects with a particular set of properties? The authors have presented a text for students at all levels of preparation. For some, this will be the first course where the students see several real proofs. Others will have a good background in linear algebra, will have completed the calculus stream, and will have started abstract algebra. The text starts by briefly discussing several examples of typical combinatorial problems to give the reader a better idea of what the subject covers. The next chapters explore enumerative ideas and also probability. It then moves on to enumerative functions and the relations between them, and generating functions and recurrences., Important families of functions, or numbers and then theorems are presented. Brief introductions to computer algebra and group theory come next. Structures of particular interest in combinatorics: posets, graphs, codes, Latin squares, and experimental designs follow. The authors conclude with further discussion of the interaction between linear algebra and combinatorics. Features Two new chapters on probability and posets. Numerous new illustrations, exercises, and problems. More examples on current technology use A thorough focus on accuracy Three appendices: sets, induction and proof techniques, vectors and matrices, and biographies with historical notes, Flexible use of MapleTM and MathematicaTM
Publisher: CRC Press
ISBN: 1498777635
Category : Mathematics
Languages : en
Pages : 424
Book Description
What Is Combinatorics Anyway? Broadly speaking, combinatorics is the branch of mathematics dealing with different ways of selecting objects from a set or arranging objects. It tries to answer two major kinds of questions, namely, counting questions: how many ways can a selection or arrangement be chosen with a particular set of properties; and structural questions: does there exist a selection or arrangement of objects with a particular set of properties? The authors have presented a text for students at all levels of preparation. For some, this will be the first course where the students see several real proofs. Others will have a good background in linear algebra, will have completed the calculus stream, and will have started abstract algebra. The text starts by briefly discussing several examples of typical combinatorial problems to give the reader a better idea of what the subject covers. The next chapters explore enumerative ideas and also probability. It then moves on to enumerative functions and the relations between them, and generating functions and recurrences., Important families of functions, or numbers and then theorems are presented. Brief introductions to computer algebra and group theory come next. Structures of particular interest in combinatorics: posets, graphs, codes, Latin squares, and experimental designs follow. The authors conclude with further discussion of the interaction between linear algebra and combinatorics. Features Two new chapters on probability and posets. Numerous new illustrations, exercises, and problems. More examples on current technology use A thorough focus on accuracy Three appendices: sets, induction and proof techniques, vectors and matrices, and biographies with historical notes, Flexible use of MapleTM and MathematicaTM
Combinatorial Rigidity
Author: Jack E. Graver
Publisher: American Mathematical Soc.
ISBN: 0821838016
Category : Mathematics
Languages : en
Pages : 184
Book Description
This book presents rigidity theory in a historical context. The combinatorial aspects of rigidity are isolated and framed in terms of a special class of matroids, which are a natural generalization of the connectivity matroid of a graph. The book includes an introduction to matroid theory and an extensive study of planar rigidity. The final chapter is devoted to higher dimensional rigidity, highlighting the main open questions. Also included is an extensive annotated bibiolography with over 150 entries. The book is aimed at graduate students and researchers in graph theory and combinatorics or in fields which apply the structural aspects of these subjects in architecture and engineering. Accessible to those who have had an introduction to graph theory at the senior or graduate level, the book would be suitable for a graduate course in graph theory.
Publisher: American Mathematical Soc.
ISBN: 0821838016
Category : Mathematics
Languages : en
Pages : 184
Book Description
This book presents rigidity theory in a historical context. The combinatorial aspects of rigidity are isolated and framed in terms of a special class of matroids, which are a natural generalization of the connectivity matroid of a graph. The book includes an introduction to matroid theory and an extensive study of planar rigidity. The final chapter is devoted to higher dimensional rigidity, highlighting the main open questions. Also included is an extensive annotated bibiolography with over 150 entries. The book is aimed at graduate students and researchers in graph theory and combinatorics or in fields which apply the structural aspects of these subjects in architecture and engineering. Accessible to those who have had an introduction to graph theory at the senior or graduate level, the book would be suitable for a graduate course in graph theory.
Combinatorics: The Art of Counting
Author: Bruce E. Sagan
Publisher: American Mathematical Soc.
ISBN: 1470460327
Category : Education
Languages : en
Pages : 304
Book Description
This book is a gentle introduction to the enumerative part of combinatorics suitable for study at the advanced undergraduate or beginning graduate level. In addition to covering all the standard techniques for counting combinatorial objects, the text contains material from the research literature which has never before appeared in print, such as the use of quotient posets to study the Möbius function and characteristic polynomial of a partially ordered set, or the connection between quasisymmetric functions and pattern avoidance. The book assumes minimal background, and a first course in abstract algebra should suffice. The exposition is very reader friendly: keeping a moderate pace, using lots of examples, emphasizing recurring themes, and frankly expressing the delight the author takes in mathematics in general and combinatorics in particular.
Publisher: American Mathematical Soc.
ISBN: 1470460327
Category : Education
Languages : en
Pages : 304
Book Description
This book is a gentle introduction to the enumerative part of combinatorics suitable for study at the advanced undergraduate or beginning graduate level. In addition to covering all the standard techniques for counting combinatorial objects, the text contains material from the research literature which has never before appeared in print, such as the use of quotient posets to study the Möbius function and characteristic polynomial of a partially ordered set, or the connection between quasisymmetric functions and pattern avoidance. The book assumes minimal background, and a first course in abstract algebra should suffice. The exposition is very reader friendly: keeping a moderate pace, using lots of examples, emphasizing recurring themes, and frankly expressing the delight the author takes in mathematics in general and combinatorics in particular.