Collocation Methods for Volterra Integral and Related Functional Differential Equations PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Collocation Methods for Volterra Integral and Related Functional Differential Equations PDF full book. Access full book title Collocation Methods for Volterra Integral and Related Functional Differential Equations by Hermann Brunner. Download full books in PDF and EPUB format.

Collocation Methods for Volterra Integral and Related Functional Differential Equations

Collocation Methods for Volterra Integral and Related Functional Differential Equations PDF Author: Hermann Brunner
Publisher: Cambridge University Press
ISBN: 9780521806152
Category : Mathematics
Languages : en
Pages : 620

Book Description
Collocation based on piecewise polynomial approximation represents a powerful class of methods for the numerical solution of initial-value problems for functional differential and integral equations arising in a wide spectrum of applications, including biological and physical phenomena. The present book introduces the reader to the general principles underlying these methods and then describes in detail their convergence properties when applied to ordinary differential equations, functional equations with (Volterra type) memory terms, delay equations, and differential-algebraic and integral-algebraic equations. Each chapter starts with a self-contained introduction to the relevant theory of the class of equations under consideration. Numerous exercises and examples are supplied, along with extensive historical and bibliographical notes utilising the vast annotated reference list of over 1300 items. In sum, Hermann Brunner has written a treatise that can serve as an introduction for students, a guide for users, and a comprehensive resource for experts.

Collocation Methods for Volterra Integral and Related Functional Differential Equations

Collocation Methods for Volterra Integral and Related Functional Differential Equations PDF Author: Hermann Brunner
Publisher: Cambridge University Press
ISBN: 9780521806152
Category : Mathematics
Languages : en
Pages : 620

Book Description
Collocation based on piecewise polynomial approximation represents a powerful class of methods for the numerical solution of initial-value problems for functional differential and integral equations arising in a wide spectrum of applications, including biological and physical phenomena. The present book introduces the reader to the general principles underlying these methods and then describes in detail their convergence properties when applied to ordinary differential equations, functional equations with (Volterra type) memory terms, delay equations, and differential-algebraic and integral-algebraic equations. Each chapter starts with a self-contained introduction to the relevant theory of the class of equations under consideration. Numerous exercises and examples are supplied, along with extensive historical and bibliographical notes utilising the vast annotated reference list of over 1300 items. In sum, Hermann Brunner has written a treatise that can serve as an introduction for students, a guide for users, and a comprehensive resource for experts.

Chebyshev and Fourier Spectral Methods

Chebyshev and Fourier Spectral Methods PDF Author: John P. Boyd
Publisher: Courier Corporation
ISBN: 0486411834
Category : Mathematics
Languages : en
Pages : 690

Book Description
Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.

Implementing Spectral Methods for Partial Differential Equations

Implementing Spectral Methods for Partial Differential Equations PDF Author: David A. Kopriva
Publisher: Springer Science & Business Media
ISBN: 9048122619
Category : Mathematics
Languages : en
Pages : 397

Book Description
This book explains how to solve partial differential equations numerically using single and multidomain spectral methods. It shows how only a few fundamental algorithms form the building blocks of any spectral code, even for problems with complex geometries.

Finite Elements

Finite Elements PDF Author: Dietrich Braess
Publisher: Cambridge University Press
ISBN: 113946146X
Category : Mathematics
Languages : en
Pages : 348

Book Description
This definitive introduction to finite element methods was thoroughly updated for this 2007 third edition, which features important material for both research and application of the finite element method. The discussion of saddle-point problems is a highlight of the book and has been elaborated to include many more nonstandard applications. The chapter on applications in elasticity now contains a complete discussion of locking phenomena. The numerical solution of elliptic partial differential equations is an important application of finite elements and the author discusses this subject comprehensively. These equations are treated as variational problems for which the Sobolev spaces are the right framework. Graduate students who do not necessarily have any particular background in differential equations, but require an introduction to finite element methods will find this text invaluable. Specifically, the chapter on finite elements in solid mechanics provides a bridge between mathematics and engineering.

Polynomial Chaos Methods for Hyperbolic Partial Differential Equations

Polynomial Chaos Methods for Hyperbolic Partial Differential Equations PDF Author: Mass Per Pettersson
Publisher: Springer
ISBN: 3319107143
Category : Technology & Engineering
Languages : en
Pages : 217

Book Description
This monograph presents computational techniques and numerical analysis to study conservation laws under uncertainty using the stochastic Galerkin formulation. With the continual growth of computer power, these methods are becoming increasingly popular as an alternative to more classical sampling-based techniques. The text takes advantage of stochastic Galerkin projections applied to the original conservation laws to produce a large system of modified partial differential equations, the solutions to which directly provide a full statistical characterization of the effect of uncertainties. Polynomial Chaos Methods of Hyperbolic Partial Differential Equations focuses on the analysis of stochastic Galerkin systems obtained for linear and non-linear convection-diffusion equations and for a systems of conservation laws; a detailed well-posedness and accuracy analysis is presented to enable the design of robust and stable numerical methods. The exposition is restricted to one spatial dimension and one uncertain parameter as its extension is conceptually straightforward. The numerical methods designed guarantee that the solutions to the uncertainty quantification systems will converge as the mesh size goes to zero. Examples from computational fluid dynamics are presented together with numerical methods suitable for the problem at hand: stable high-order finite-difference methods based on summation-by-parts operators for smooth problems, and robust shock-capturing methods for highly nonlinear problems. Academics and graduate students interested in computational fluid dynamics and uncertainty quantification will find this book of interest. Readers are expected to be familiar with the fundamentals of numerical analysis. Some background in stochastic methods is useful but notnecessary.

Spectral Numerical Weather Prediction Models

Spectral Numerical Weather Prediction Models PDF Author: Martin Ehrendorfer
Publisher: SIAM
ISBN: 1611971993
Category : Mathematics
Languages : en
Pages : 503

Book Description
This book provides a comprehensive overview of numerical weather prediction (NWP) focusing on the application of the spectral method in NWP models. The author illustrates the use of the spectral method in theory as well as in its application to building a full prototypical spectral NWP model, from the formulation of continuous model equations through development of their discretized forms to coded statements of the model. The author describes the implementation of a specific model - PEAK (Primitive-Equation Atmospheric Research Model Kernel) - to illustrate the steps needed to construct a global spectral NWP model. The book brings together all the spectral, time, and vertical discretization aspects relevant for such a model. It provides readers with information necessary to construct spectral NWP models; a self-contained, well-documented, coded spectral NWP model; and theoretical and practical exercises, some of which include solutions.

Galerkin Finite Element Methods for Parabolic Problems

Galerkin Finite Element Methods for Parabolic Problems PDF Author: Vidar Thomee
Publisher: Springer Science & Business Media
ISBN: 3662033593
Category : Mathematics
Languages : en
Pages : 310

Book Description
My purpose in this monograph is to present an essentially self-contained account of the mathematical theory of Galerkin finite element methods as applied to parabolic partial differential equations. The emphases and selection of topics reflects my own involvement in the field over the past 25 years, and my ambition has been to stress ideas and methods of analysis rather than to describe the most general and farreaching results possible. Since the formulation and analysis of Galerkin finite element methods for parabolic problems are generally based on ideas and results from the corresponding theory for stationary elliptic problems, such material is often included in the presentation. The basis of this work is my earlier text entitled Galerkin Finite Element Methods for Parabolic Problems, Springer Lecture Notes in Mathematics, No. 1054, from 1984. This has been out of print for several years, and I have felt a need and been encouraged by colleagues and friends to publish an updated version. In doing so I have included most of the contents of the 14 chapters of the earlier work in an updated and revised form, and added four new chapters, on semigroup methods, on multistep schemes, on incomplete iterative solution of the linear algebraic systems at the time levels, and on semilinear equations. The old chapters on fully discrete methods have been reworked by first treating the time discretization of an abstract differential equation in a Hilbert space setting, and the chapter on the discontinuous Galerkin method has been completely rewritten.

Spectral Methods

Spectral Methods PDF Author: Jie Shen
Publisher: Springer Science & Business Media
ISBN: 3540710418
Category : Mathematics
Languages : en
Pages : 481

Book Description
Along with finite differences and finite elements, spectral methods are one of the three main methodologies for solving partial differential equations on computers. This book provides a detailed presentation of basic spectral algorithms, as well as a systematical presentation of basic convergence theory and error analysis for spectral methods. Readers of this book will be exposed to a unified framework for designing and analyzing spectral algorithms for a variety of problems, including in particular high-order differential equations and problems in unbounded domains. The book contains a large number of figures which are designed to illustrate various concepts stressed in the book. A set of basic matlab codes has been made available online to help the readers to develop their own spectral codes for their specific applications.

Sinc Methods for Quadrature and Differential Equations

Sinc Methods for Quadrature and Differential Equations PDF Author: John Lund
Publisher: SIAM
ISBN: 089871298X
Category : Mathematics
Languages : en
Pages : 306

Book Description
Here is an elementary development of the Sinc-Galerkin method with the focal point being ordinary and partial differential equations. This is the first book to explain this powerful computational method for treating differential equations. These methods are an alternative to finite difference and finite element schemes, and are especially adaptable to problems with singular solutions. The text is written to facilitate easy implementation of the theory into operating numerical code. The authors' use of differential equations as a backdrop for the presentation of the material allows them to present a number of the applications of the sinc method. Many of these applications are useful in numerical processes of interest quite independent of differential equations. Specifically, numerical interpolation and quadrature, while fundamental to the Galerkin development, are useful in their own right.

Spectral Methods for Time-Dependent Problems

Spectral Methods for Time-Dependent Problems PDF Author: Jan S. Hesthaven
Publisher: Cambridge University Press
ISBN: 113945952X
Category : Mathematics
Languages : en
Pages : 4

Book Description
Spectral methods are well-suited to solve problems modeled by time-dependent partial differential equations: they are fast, efficient and accurate and widely used by mathematicians and practitioners. This class-tested 2007 introduction, the first on the subject, is ideal for graduate courses, or self-study. The authors describe the basic theory of spectral methods, allowing the reader to understand the techniques through numerous examples as well as more rigorous developments. They provide a detailed treatment of methods based on Fourier expansions and orthogonal polynomials (including discussions of stability, boundary conditions, filtering, and the extension from the linear to the nonlinear situation). Computational solution techniques for integration in time are dealt with by Runge-Kutta type methods. Several chapters are devoted to material not previously covered in book form, including stability theory for polynomial methods, techniques for problems with discontinuous solutions, round-off errors and the formulation of spectral methods on general grids. These will be especially helpful for practitioners.