Circuit Design Techniques for Power Efficient Microscale Energy Harvesting Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Circuit Design Techniques for Power Efficient Microscale Energy Harvesting Systems PDF full book. Access full book title Circuit Design Techniques for Power Efficient Microscale Energy Harvesting Systems by Ayman Abdelaziz Eltaliawy. Download full books in PDF and EPUB format.

Circuit Design Techniques for Power Efficient Microscale Energy Harvesting Systems

Circuit Design Techniques for Power Efficient Microscale Energy Harvesting Systems PDF Author: Ayman Abdelaziz Eltaliawy
Publisher:
ISBN:
Category : Energy harvesting
Languages : en
Pages : 190

Book Description
Abstract: Power Management is considered one of the hot topics nowadays, as it is already known that all integrated circuits need a stable supply with low noise, a constant voltage level across time, and the ability to supply large range of loads. Normal batteries do not provide those specifications. A new concept of energy management called energy harvesting is introduced here. Energy harvesting means collecting power from ambient resources like solar power, Radio Frequency (RF) power, energy from motion...etc. The Energy is collected by means of a transducer that directly converts this energy into electrical energy that can be managed by design to supply different loads. Harvested energy management is critical because normal batteries have to be replaced with energy harvesting modules with power management, in order to make integrated circuits fully autonomous; this leads to a decrease in maintenance costs and increases the life time. This work covers the design of an energy harvesting system focusing on micro-scale solar energy harvesting with power management. The target application of this study is a Wireless Sensor Node/Network (WSN) because its applications are very wide and power management in it is a big issue, as it is very hard to replace the battery of a WSN after deployment. The contribution of this work is mainly shown on two different scopes. The first scope is to propose a new tracking technique and to verify on the system level. The second scope is to propose a new optimized architecture for switched capacitor based power converters. At last, some future recommendations are proposed for this work to be more robust and reliable so that it can be transfered to the production phase. The proposed system design is based on the sub-threshold operation. This design approach decreases the amount of power consumed in the control circuit. It can efficiently harvest the maximum power possible from the photo-voltaic cell and transfer this power to the super-capacitor side with high efficiency. It shows a better performance compared to the literature work. The proposed architecture of the charge pump is more efficient in terms of power capability and knee frequency over the basic linear charge pump topology. Comparison with recent topologies are discussed and shows the robustness of the proposed technique.

Circuit Design Techniques for Power Efficient Microscale Energy Harvesting Systems

Circuit Design Techniques for Power Efficient Microscale Energy Harvesting Systems PDF Author: Ayman Abdelaziz Eltaliawy
Publisher:
ISBN:
Category : Energy harvesting
Languages : en
Pages : 190

Book Description
Abstract: Power Management is considered one of the hot topics nowadays, as it is already known that all integrated circuits need a stable supply with low noise, a constant voltage level across time, and the ability to supply large range of loads. Normal batteries do not provide those specifications. A new concept of energy management called energy harvesting is introduced here. Energy harvesting means collecting power from ambient resources like solar power, Radio Frequency (RF) power, energy from motion...etc. The Energy is collected by means of a transducer that directly converts this energy into electrical energy that can be managed by design to supply different loads. Harvested energy management is critical because normal batteries have to be replaced with energy harvesting modules with power management, in order to make integrated circuits fully autonomous; this leads to a decrease in maintenance costs and increases the life time. This work covers the design of an energy harvesting system focusing on micro-scale solar energy harvesting with power management. The target application of this study is a Wireless Sensor Node/Network (WSN) because its applications are very wide and power management in it is a big issue, as it is very hard to replace the battery of a WSN after deployment. The contribution of this work is mainly shown on two different scopes. The first scope is to propose a new tracking technique and to verify on the system level. The second scope is to propose a new optimized architecture for switched capacitor based power converters. At last, some future recommendations are proposed for this work to be more robust and reliable so that it can be transfered to the production phase. The proposed system design is based on the sub-threshold operation. This design approach decreases the amount of power consumed in the control circuit. It can efficiently harvest the maximum power possible from the photo-voltaic cell and transfer this power to the super-capacitor side with high efficiency. It shows a better performance compared to the literature work. The proposed architecture of the charge pump is more efficient in terms of power capability and knee frequency over the basic linear charge pump topology. Comparison with recent topologies are discussed and shows the robustness of the proposed technique.

Circuit Design Techniques for Microscale Energy Harvesting Systems

Circuit Design Techniques for Microscale Energy Harvesting Systems PDF Author: Ayman Eltaliawy
Publisher: LAP Lambert Academic Publishing
ISBN: 9783659623844
Category :
Languages : en
Pages : 112

Book Description
Power Management is considered one of the hot topics nowadays, as it is already known that all integrated circuits need a stable supply with low noise, a constant voltage level across time, and the ability to supply large range of loads. Normal batteries do not provide those specifications. A new concept of energy management called energy harvesting is introduced here. Energy harvesting means collecting power from ambient resources like solar power, Radio Frequency (RF) power, energy from motion...etc. The Energy is collected by means of a transducer that directly converts this energy into electrical energy that can be managed by design to supply different loads. Harvested energy management is critical because normal batteries have to be replaced with energy harvesting modules with power management, in order to make integrated circuits fully autonomous; this leads to a decrease in maintenance costs and increases the life time.

Energy Harvesting Technologies

Energy Harvesting Technologies PDF Author: Shashank Priya
Publisher: Springer Science & Business Media
ISBN: 038776464X
Category : Technology & Engineering
Languages : en
Pages : 522

Book Description
Energy Harvesting Technologies provides a cohesive overview of the fundamentals and current developments in the field of energy harvesting. In a well-organized structure, this volume discusses basic principles for the design and fabrication of bulk and MEMS based vibration energy systems, theory and design rules required for fabrication of efficient electronics, in addition to recent findings in thermoelectric energy harvesting systems. Combining leading research from both academia and industry onto a single platform, Energy Harvesting Technologies serves as an important reference for researchers and engineers involved with power sources, sensor networks and smart materials.

Microelectronic Circuit Design for Energy Harvesting Systems

Microelectronic Circuit Design for Energy Harvesting Systems PDF Author: Maurizio Di Paolo Emilio
Publisher: Springer
ISBN: 3319475878
Category : Technology & Engineering
Languages : en
Pages : 181

Book Description
This book describes the design of microelectronic circuits for energy harvesting, broadband energy conversion, new methods and technologies for energy conversion. The author also discusses the design of power management circuits and the implementation of voltage regulators. Coverage includes advanced methods in low and high power electronics, as well as principles of micro-scale design based on piezoelectric, electromagnetic and thermoelectric technologies with control and conditioning circuit design.

Design and Fabrication of Self-Powered Micro-Harvesters

Design and Fabrication of Self-Powered Micro-Harvesters PDF Author: C. T. Pan
Publisher: John Wiley & Sons
ISBN: 1118487826
Category : Technology & Engineering
Languages : en
Pages : 344

Book Description
Presents the latest methods for designing and fabricating self-powered micro-generators and energy harvester systems Design and Fabrication of Self-Powered Micro-Harvesters introduces the latest trends of self-powered generators and energy harvester systems, including the design, analysis and fabrication of micro power systems. Presented in four distinct parts, the authors explore the design and fabrication of: vibration-induced electromagnetic micro-generators; rotary electromagnetic micro-generators; flexible piezo-micro-generator with various widths; and PVDF electrospunpiezo-energy with interdigital electrode. Focusing on the latest developments of self-powered microgenerators such as micro rotary with LTCC and filament winding method, flexible substrate, and piezo fiber-typed microgenerator with sound organization, the fabrication processes involved in MEMS and nanotechnology are introduced chapter by chapter. In addition, analytical solutions are developed for each generator to help the reader to understand the fundamentals of physical phenomena. Fully illustrated throughout and of a high technical specification, it is written in an accessible style to provide an essential reference for industry and academic researchers. Comprehensive treatment of the newer harvesting devices including vibration-induced and rotary electromagnetic microgenerators, polyvinylidene fluoride (PVDF) nanoscale/microscale fiber, and piezo-micro-generators Presents innovative technologies including LTCC (low temperature co-fire ceramic) processes, and PCB (printed circuit board) processes Offers interdisciplinary interest in MEMS/NEMS technologies, green energy applications, bio-related sensors, actuators and generators Presented in a readable style describing the fundamentals, applications and explanations of micro-harvesters, with full illustration

Micro Energy Harvesting

Micro Energy Harvesting PDF Author: Danick Briand
Publisher: John Wiley & Sons
ISBN: 3527672931
Category : Technology & Engineering
Languages : en
Pages : 490

Book Description
With its inclusion of the fundamentals, systems and applications, this reference provides readers with the basics of micro energy conversion along with expert knowledge on system electronics and real-life microdevices. The authors address different aspects of energy harvesting at the micro scale with a focus on miniaturized and microfabricated devices. Along the way they provide an overview of the field by compiling knowledge on the design, materials development, device realization and aspects of system integration, covering emerging technologies, as well as applications in power management, energy storage, medicine and low-power system electronics. In addition, they survey the energy harvesting principles based on chemical, thermal, mechanical, as well as hybrid and nanotechnology approaches. In unparalleled detail this volume presents the complete picture -- and a peek into the future -- of micro-powered microsystems.

Ultra-Low-Voltage Design of Energy-Efficient Digital Circuits

Ultra-Low-Voltage Design of Energy-Efficient Digital Circuits PDF Author: Nele Reynders
Publisher: Springer
ISBN: 3319161369
Category : Technology & Engineering
Languages : en
Pages : 207

Book Description
This book focuses on increasing the energy-efficiency of electronic devices so that portable applications can have a longer stand-alone time on the same battery. The authors explain the energy-efficiency benefits that ultra-low-voltage circuits provide and provide answers to tackle the challenges which ultra-low-voltage operation poses. An innovative design methodology is presented, verified, and validated by four prototypes in advanced CMOS technologies. These prototypes are shown to achieve high energy-efficiency through their successful functionality at ultra-low supply voltages.

Micro-Relay Technology for Energy-Efficient Integrated Circuits

Micro-Relay Technology for Energy-Efficient Integrated Circuits PDF Author: Hei Kam
Publisher: Springer
ISBN: 1493921282
Category : Technology & Engineering
Languages : en
Pages : 190

Book Description
This volume describes the design of relay-based circuit systems from device fabrication to circuit micro-architectures. This book is ideal for both device engineers as well as circuit system designers, and highlights the importance of co-design across design hierarchies when trying to optimize system performance (in this case, energy-efficiency). The book will also appeal to researchers and engineers focused on semiconductor, integrated circuits, and energy efficient electronics.

Energy Efficient Microprocessor Design

Energy Efficient Microprocessor Design PDF Author: Thomas D. Burd
Publisher: Springer Science & Business Media
ISBN: 9780792375869
Category : Computers
Languages : en
Pages : 384

Book Description
This volume starts with a description of the metrics and benchmarks used to design energy-efficient microprocessor systems, followed by energy-efficient methodologies for the architecture and circuit design, DC-DC conversion, energy-efficient software and system integration.

Low Power and Low Voltage Circuit Design with the FGMOS Transistor

Low Power and Low Voltage Circuit Design with the FGMOS Transistor PDF Author: Esther Rodriguez-Villegas
Publisher: IET
ISBN: 0863416179
Category : Technology & Engineering
Languages : en
Pages : 320

Book Description
Motivated by consumer demand for smaller, more portable electronic devices that offer more features and operate for longer on their existing battery packs, cutting edge electronic circuits need to be ever more power efficient. For the circuit designer, this requires an understanding of the latest low voltage and low power (LV/LP) techniques, one of the most promising of which makes use of the floating gate MOS (FGMOS) transistor.