Chemical Solution Deposition Of Semiconductor Films PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Chemical Solution Deposition Of Semiconductor Films PDF full book. Access full book title Chemical Solution Deposition Of Semiconductor Films by Gary Hodes. Download full books in PDF and EPUB format.

Chemical Solution Deposition Of Semiconductor Films

Chemical Solution Deposition Of Semiconductor Films PDF Author: Gary Hodes
Publisher: CRC Press
ISBN: 9780203909096
Category : Science
Languages : en
Pages : 400

Book Description
Discussing specific depositions of a wide range of semiconductors and properties of the resulting films, Chemical Solution Deposition of Semiconductor Films examines the processes involved and explains the effect of various process parameters on final film and film deposition outcomes through the use of detailed examples. Supplying experimental res

Chemical Solution Deposition Of Semiconductor Films

Chemical Solution Deposition Of Semiconductor Films PDF Author: Gary Hodes
Publisher: CRC Press
ISBN: 9780203909096
Category : Science
Languages : en
Pages : 400

Book Description
Discussing specific depositions of a wide range of semiconductors and properties of the resulting films, Chemical Solution Deposition of Semiconductor Films examines the processes involved and explains the effect of various process parameters on final film and film deposition outcomes through the use of detailed examples. Supplying experimental res

Chemical Solution Deposition of Semiconducting and Non-metallic Films

Chemical Solution Deposition of Semiconducting and Non-metallic Films PDF Author: Daniel Lincot
Publisher: The Electrochemical Society
ISBN: 9781566774338
Category : Science
Languages : en
Pages : 246

Book Description


Chemical Solution Deposition of Functional Oxide Thin Films

Chemical Solution Deposition of Functional Oxide Thin Films PDF Author: Theodor Schneller
Publisher: Springer Science & Business Media
ISBN: 3211993118
Category : Technology & Engineering
Languages : en
Pages : 801

Book Description
This is the first text to cover all aspects of solution processed functional oxide thin-films. Chemical Solution Deposition (CSD) comprises all solution based thin- film deposition techniques, which involve chemical reactions of precursors during the formation of the oxide films, i. e. sol-gel type routes, metallo-organic decomposition routes, hybrid routes, etc. While the development of sol-gel type processes for optical coatings on glass by silicon dioxide and titanium dioxide dates from the mid-20th century, the first CSD derived electronic oxide thin films, such as lead zirconate titanate, were prepared in the 1980’s. Since then CSD has emerged as a highly flexible and cost-effective technique for the fabrication of a very wide variety of functional oxide thin films. Application areas include, for example, integrated dielectric capacitors, ferroelectric random access memories, pyroelectric infrared detectors, piezoelectric micro-electromechanical systems, antireflective coatings, optical filters, conducting-, transparent conducting-, and superconducting layers, luminescent coatings, gas sensors, thin film solid-oxide fuel cells, and photoelectrocatalytic solar cells. In the appendix detailed “cooking recipes” for selected material systems are offered.

Chemical Solution Synthesis for Materials Design and Thin Film Device Applications

Chemical Solution Synthesis for Materials Design and Thin Film Device Applications PDF Author: Soumen Das
Publisher: Elsevier
ISBN: 0128197188
Category : Technology & Engineering
Languages : en
Pages : 746

Book Description
Chemical Solution Synthesis for Materials Design and Thin Film Device Applications presents current research on wet chemical techniques for thin-film based devices. Sections cover the quality of thin films, types of common films used in devices, various thermodynamic properties, thin film patterning, device configuration and applications. As a whole, these topics create a roadmap for developing new materials and incorporating the results in device fabrication. This book is suitable for graduate, undergraduate, doctoral students, and researchers looking for quick guidance on material synthesis and device fabrication through wet chemical routes. Provides the different wet chemical routes for materials synthesis, along with the most relevant thin film structured materials for device applications Discusses patterning and solution processing of inorganic thin films, along with solvent-based processing techniques Includes an overview of key processes and methods in thin film synthesis, processing and device fabrication, such as nucleation, lithography and solution processing

Chemical Solution Deposition of YBa2CU3O7-x Thin Films for Interconnect Applications

Chemical Solution Deposition of YBa2CU3O7-x Thin Films for Interconnect Applications PDF Author: Aoife Maria Sexton
Publisher:
ISBN:
Category : Superconductivity
Languages : en
Pages : 96

Book Description


Chemical Solution Synthesis for Materials Design and Thin Film Device Applications

Chemical Solution Synthesis for Materials Design and Thin Film Device Applications PDF Author: Soumen Das
Publisher: Elsevier
ISBN: 012823170X
Category : Technology & Engineering
Languages : en
Pages : 748

Book Description
Chemical Solution Synthesis for Materials Design and Thin Film Device Applications presents current research on wet chemical techniques for thin-film based devices. Sections cover the quality of thin films, types of common films used in devices, various thermodynamic properties, thin film patterning, device configuration and applications. As a whole, these topics create a roadmap for developing new materials and incorporating the results in device fabrication. This book is suitable for graduate, undergraduate, doctoral students, and researchers looking for quick guidance on material synthesis and device fabrication through wet chemical routes. - Provides the different wet chemical routes for materials synthesis, along with the most relevant thin film structured materials for device applications - Discusses patterning and solution processing of inorganic thin films, along with solvent-based processing techniques - Includes an overview of key processes and methods in thin film synthesis, processing and device fabrication, such as nucleation, lithography and solution processing

Ferroelectricity in Doped Hafnium Oxide

Ferroelectricity in Doped Hafnium Oxide PDF Author: Uwe Schroeder
Publisher: Woodhead Publishing
ISBN: 0081024312
Category : Technology & Engineering
Languages : en
Pages : 572

Book Description
Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices covers all aspects relating to the structural and electrical properties of HfO2 and its implementation into semiconductor devices, including a comparison to standard ferroelectric materials. The ferroelectric and field-induced ferroelectric properties of HfO2-based films are considered promising for various applications, including non-volatile memories, negative capacitance field-effect-transistors, energy storage, harvesting, and solid-state cooling. Fundamentals of ferroelectric and piezoelectric properties, HfO2 processes, and the impact of dopants on ferroelectric properties are also extensively discussed in the book, along with phase transition, switching kinetics, epitaxial growth, thickness scaling, and more. Additional chapters consider the modeling of ferroelectric phase transformation, structural characterization, and the differences and similarities between HFO2 and standard ferroelectric materials. Finally, HfO2 based devices are summarized. - Explores all aspects of the structural and electrical properties of HfO2, including processes, modelling and implementation into semiconductor devices - Considers potential applications including FeCaps, FeFETs, NCFETs, FTJs and more - Provides comparison of an emerging ferroelectric material to conventional ferroelectric materials with insights to the problems of downscaling that conventional ferroelectrics face

Atomic Layer Deposition for Semiconductors

Atomic Layer Deposition for Semiconductors PDF Author: Cheol Seong Hwang
Publisher: Springer Science & Business Media
ISBN: 146148054X
Category : Science
Languages : en
Pages : 266

Book Description
Offering thorough coverage of atomic layer deposition (ALD), this book moves from basic chemistry of ALD and modeling of processes to examine ALD in memory, logic devices and machines. Reviews history, operating principles and ALD processes for each device.

Chemical Physics of Thin Film Deposition Processes for Micro- and Nano-Technologies

Chemical Physics of Thin Film Deposition Processes for Micro- and Nano-Technologies PDF Author: Y. Pauleau
Publisher: Springer Science & Business Media
ISBN: 940100353X
Category : Technology & Engineering
Languages : en
Pages : 372

Book Description
An up-to-date collection of tutorial papers on the latest advances in the deposition and growth of thin films for micro and nano technologies. The emphasis is on fundamental aspects, principles and applications of deposition techniques used for the fabrication of micro and nano devices. The deposition of thin films is described, emphasising the gas phase and surface chemistry and its effects on the growth rates and properties of films. Gas-phase phenomena, surface chemistry, growth mechanisms and the modelling of deposition processes are thoroughly described and discussed to provide a clear understanding of the growth of thin films and microstructures via thermally activated, laser induced, photon assisted, ion beam assisted, and plasma enhanced vapour deposition processes. A handbook for engineers and scientists and an introduction for students of microelectronics.

Solution Deposition of Semiconductor Thin Films for Photovoltaics

Solution Deposition of Semiconductor Thin Films for Photovoltaics PDF Author: Steven Michael Herron
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Thin film photovoltaics are among the most promising clean, renewable energy technologies and have the potential to meet future world energy demand by covering only a small fraction of the earth's surface. To meet this challenge, annual production of photovoltaic modules, despite recent escalation, must still increase several orders of magnitude, and the development of inexpensive and scalable thin film deposition methods is of crucial importance to this effort. The cost and scalability limitations of the standard high-vacuum thin film deposition methods may be overcome by using solution-based methods. Furthermore, the transition from photovoltaic materials containing cadmium, indium, and tellurium to materials comprised of earth-abundant, non-toxic elements is expected to accelerate their large-scale deployment. Here, I present several strategies for the improvement of inorganic thin films synthesized by solution deposition. In this work, two low-cost, solution-based methods (chemical bath deposition and nanocrystal inks) were applied to the deposition of thin films of ZnS, SnS, and Cu2ZnSnS4 (CZTS), all potential earth-abundant non-toxic materials for photovoltaics. First, through the chemical bath deposition of SnS, I show how film quality is a function of deposition kinetics and can be manipulated through control of bath compositions and post-annealing parameters to improve film properties In the same SnS system, using nanocrystal inks, I show that control over nanocrystal morphology can be used as a strategy for improving thin film quality. A selective synthesis was developed for the production of high-aspect ratio sheet-like nanocrystals. Nanocrystal inks formulated from these crystals were capable of producing extremely highly-oriented thin films through the lamellar stacking of SnS sheets, which yielded favorable optical and electronic properties. The second major study in nanocrystal inks examined the efficacy of inorganic ligand exchanges and the resulting effect on film formation. Ammonium polysulfides were demonstrated as a novel species for ligand exchange on cubic ZnS nanocrystals, where they were shown to remove native ligands with high efficacy and improve film quality. Finally, this ligand exchange was applied to CZTS nanocrystal inks with promising implications for the deposition solar absorber layers. The use of these ligands has the potential to improve efficiency and lower costs in the production of CZTS photovoltaics and other chalcogenide thin films.