Characterization of Particulate Emissions from Gasoline-fueled Vehicles PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Characterization of Particulate Emissions from Gasoline-fueled Vehicles PDF full book. Access full book title Characterization of Particulate Emissions from Gasoline-fueled Vehicles by Joseph M. Norbeck. Download full books in PDF and EPUB format.

Characterization of Particulate Emissions from Gasoline-fueled Vehicles

Characterization of Particulate Emissions from Gasoline-fueled Vehicles PDF Author: Joseph M. Norbeck
Publisher:
ISBN:
Category : Air
Languages : en
Pages : 138

Book Description


Characterization of Particulate Emissions from Gasoline-fueled Vehicles

Characterization of Particulate Emissions from Gasoline-fueled Vehicles PDF Author: Joseph M. Norbeck
Publisher:
ISBN:
Category : Air
Languages : en
Pages : 138

Book Description


Characterization of Particulate Emissions from In-use Gasoline-fueled Motor Vehicles

Characterization of Particulate Emissions from In-use Gasoline-fueled Motor Vehicles PDF Author:
Publisher:
ISBN:
Category : Automobiles
Languages : en
Pages : 20

Book Description


Particulate Measurements and Emissions Characterization of Alternative Fuel Vehicle Exhaust

Particulate Measurements and Emissions Characterization of Alternative Fuel Vehicle Exhaust PDF Author: Thomas D. Durbin
Publisher:
ISBN:
Category : Fuel
Languages : en
Pages :

Book Description


Characterization of Particulate Emissions from 11 Gasoline and 5 Diesel-fueled Cars

Characterization of Particulate Emissions from 11 Gasoline and 5 Diesel-fueled Cars PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 150

Book Description


Characterization of Nanoparticles from Extreme-low-emission Gasoline Vehicles

Characterization of Nanoparticles from Extreme-low-emission Gasoline Vehicles PDF Author: Wei Li
Publisher:
ISBN:
Category : Automobiles
Languages : en
Pages : 168

Book Description


Physical Characterization of Exhaust Particle Emissions from Late Technology Gasoline Vehicles

Physical Characterization of Exhaust Particle Emissions from Late Technology Gasoline Vehicles PDF Author: Giorgio Martini
Publisher:
ISBN: 9789279253126
Category :
Languages : en
Pages : 55

Book Description
The study assesses the feasibility of introducing the regulated particle number measurement procedure for the regulation of gasoline vehicles, focusing on the established cut-off size of 23 nm. A range of late technology gasoline vehicles were tested under regulated and unregulated test conditions. The results indicated a distinct emission behavior of Direct Injection Gasolines (G-DI), Port Fuel Injection gasolines (PFI) and Diesels equipped with Particulate Filters (DPF), that differed both in terms of the absolute levels but also with respect to the fraction of undetected nano-sized non-volatile particles. The latter was found to be around 20% (based on comparisons with a Condensation Particle Counter (CPC) having a 50% cut-off size at 4.5 nm) for three G-DI vehicles tested, but ranged between 40 and 70% for the two PFIs measured. Interestingly, a relatively large fraction of undetected nanosized was also observed for two late technology DPFs, ranging between 30 and 50%.^To a large extent these differences originate from differences in the size distributions and the relatively blunt shape of the counting efficiency curve of PMP compliant CPCs. Under conditions favouring nucleation mode formation in the dilution tunnel, excessive particle concentrations were detected by the low cut-off size CPCs, and especially the one with a d50 at 4.5 nm, that could exceed those of the PMP compliant CPC by up to one order of magnitude. However, the concentration of these nano-sized particles was found to decrease with increasing the dilution ratio in the first stage of the Volatile Particle Remover (VPR), indicating that this is rather a volatile artifact possibly originating from re-nucleation of evaporated material downstream of the VPR. The study also investigated the potential offered by a range of available approaches to effectively control particle emissions from G-DIs.^These included the use of a Gasoline Particulate Filter (GPF), the introduction of ethanol in the fuel but also an advanced engine concept combining port and direct fuel injection. The GPF system was found to very efficient in controlling particle number emissions under all driving conditions, having no visible impact on carbon dioxide emissions. The use of fuel with hi-ethanol content (75-85%) was also found to be beneficial especially at high engine loads (up to 97% reduction of nonvolatile particle numbers) and during cold start operation (up to 70% reduction). The tests with the "hybrid" G-DI-PFI vehicle indicated that there exists the potential for significant reduction of PM formation through engine measures. The non-volatile particle number emissions of this vehicle remained below the diesel limit over all hot start tests.

Characterization of Gas- and Particle-phase Emissions from On-road Motor Vehicles

Characterization of Gas- and Particle-phase Emissions from On-road Motor Vehicles PDF Author: George Alexander Ban-Weiss
Publisher:
ISBN:
Category :
Languages : en
Pages : 414

Book Description


Engine Exhaust Particulates

Engine Exhaust Particulates PDF Author: Avinash Kumar Agarwal
Publisher: Springer
ISBN: 9811332991
Category : Technology & Engineering
Languages : en
Pages : 269

Book Description
This book provides a comparative analysis of both diesel and gasoline engine particulates, and also of the emissions resulting from the use of alternative fuels. Written by respected experts, it offers comprehensive insights into motor vehicle particulates, their formation, composition, location, measurement, characterisation and toxicology. It also addresses exhaust-gas treatment and legal, measurement-related and technological advancements concerning emissions. The book will serve as a valuable resource for academic researchers and professional automotive engineers alike.

Exhaust Particle Characterization for Lean and Stoichiometric DI Vehicles Operating on Ethanol-gasoline Blends

Exhaust Particle Characterization for Lean and Stoichiometric DI Vehicles Operating on Ethanol-gasoline Blends PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Gasoline direct injection (GDI) engines can offer better fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet the U.S. fuel economy standards for 2016. Furthermore, lean-burn GDI engines can offer even higher fuel economy than stoichiometric GDI engines and have overcome challenges associated with cost-effective aftertreatment for NOx control. Along with changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the current 10% due to the recent EPA waiver allowing 15% ethanol. In addition, the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA) mandates the use of biofuels in upcoming years. GDI engines are of environmental concern due to their high particulate matter (PM) emissions relative to port-fuel injected (PFI) gasoline vehicles; widespread market penetration of GDI vehicles may result in additional PM from mobile sources at a time when the diesel contribution is declining. In this study, we characterized particulate emissions from a European certified lean-burn GDI vehicle operating on ethanol-gasoline blends. Particle mass and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 driving cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. Fuels included certification gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. The data are compared to a previous study on a U.S.-legal stoichiometric GDI vehicle operating on the same ethanol blends. The lean-burn GDI vehicle emitted a higher number of particles, but had an overall smaller average size. Particle number per mile decreased with increasing ethanol content for the transient tests. For the 30 and 80 mph tests, particle number concentration decreased with increasing ethanol content, although the shape of the particle size distribution remained the same. Engine-out OC/EC ratios were highest for the stoichiometric GDI vehicle with E20, but tailpipe OC/EC ratios were similar for all vehicles.

Improved Characterization of Vehicle Fuels and Emissions for Particulate Matter Estimations

Improved Characterization of Vehicle Fuels and Emissions for Particulate Matter Estimations PDF Author: William Max Lichtenberg
Publisher:
ISBN: 9780438430341
Category : Air
Languages : en
Pages : 52

Book Description
Vehicle emissions are a major source of precursors for SOA, thus estimating the potential for SOA formation from vehicle emissions is desirable. Colleagues at CE-CERT conducted concurrent studies to measure the SOA formed from the eight fuels. A strong trend between the PMI and the SOA formed was observed. However, this trend was not sufficiently robust to use PMI alone as a predictor for SOA formation. A modification of the PMI was developed, the secondary PMI, by weighting the PMI factor for each of the compound classes based on the contribution of each class to potential SOA formation vs. PMI. Application of this secondary PMI demonstrated the potential for SOA formation to be estimated as a function of fuel composition. Future studies will be needed to refine development and define applicability limits of the secondary PMI.