Author: Geological Society of London
Publisher: Geological Society of London
ISBN: 9781862391307
Category : Nature
Languages : en
Pages : 230
Book Description
Fracture and In-situ Stress Characterization of Hydrocarbon Reservoirs
Geomechanical Studies of the Barnett Shale, Texas, USA
Author: John Peter Vermylen
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 143
Book Description
This thesis presents five studies of a gas shale reservoir using diverse methodologies to investigate geomechanical and transport properties that are important across the full reservoir lifecycle. Using the Barnett shale as a case study, we investigated adsorption, permeability, geomechanics, microseismicity, and stress evolution in two different study areas. The main goals of this thesis can be divided into two parts: first, to investigate how flow properties evolve with changes in stress and gas species, and second, to understand how the interactions between stress, fractures, and microseismicity control the creation of a permeable reservoir volume during hydraulic fracturing. In Chapter 2, we present results from adsorption and permeability experiments conducted on Barnett shale rock samples. We found Langmuir-type adsorption of CH4 and N2 at magnitudes consistent with previous studies of the Barnett shale. Three of our samples demonstrated BET-type adsorption of CO2, in contrast to all previous studies on CO2 adsorption in gas shales, which found Langmuir-adsorption. At low pressures (600 psi), we found preferential adsorption of CO2 over CH4 ranging from 3.6x to 5.5x. While our measurements were conducted at low pressures (up to 1500 psi), when our model fits are extrapolated to reservoir pressures they reach similar adsorption magnitudes as have been found in previous studies. At these high reservoir pressures, the very large preferential adsorption of CO2 over CH4 (up to 5-10x) suggests a significant potential for CO2 storage in gas shales like the Barnett if practical problems of injectivity and matrix transport can be overcome. We successfully measured permeability versus effective stress on two intact Barnett shale samples. We measured permeability effective stress coefficients less than 1 on both samples, invalidating our hypothesis that there might be throughgoing flow paths within the soft, porous organic kerogen that would lead the permeability effective stress coefficient to be greater than 1. The results suggest that microcracks are likely the dominant flow paths at these scales. In Chapter 3, we present integrated geological, geophysical, and geomechanical data in order to characterize the rock properties in our Barnett shale study area and to model the stress state in the reservoir before hydraulic fracturing occurred. Five parallel, horizontal wells were drilled in the study area and then fractured using three different techniques. We used the well logs from a vertical pilot well and a horizontal well to constrain the stress state in the reservoir. While there was some variation along the length of the well, we were able to determine a best fit stress state of Pp = 0.48 psi/ft, Sv = 1.1 psi/ft, SHmax = 0.73 psi/ft, and Shmin = 0.68 psi/ft. Applying this stress state to the mapped natural fractures indicates that there is significant potential for induced shear slip on natural fracture planes in this region of the Barnett, particularly close to the main hydraulic fracture where the pore pressure increase during hydraulic fracturing is likely to be very high. In Chapter 4, we present new techniques to quantify the robustness of hydraulic fracturing in gas shale reservoirs. The case study we analyzed involves five parallel horizontal wells in the Barnett shale with 51 frac stages. To investigate the numbers, sizes, and types of microearthquakes initiated during each frac stage, we created Gutenberg-Richter-type magnitude distribution plots to see if the size of events follows the characteristic scaling relationship found in natural earthquakes. We found that slickwater fracturing does generate a log-linear distribution of microearthquakes, but that it creates proportionally more small events than natural earthquake sources. Finding considerable variability in the generation of microearthquakes, we used the magnitude analysis as a proxy for the "robustness" of the stimulation of a given stage. We found that the conventionally fractured well and the two alternately fractured wells ("zipperfracs") were more effective than the simultaneously fractured wells ("simulfracs") in generating microearthquakes. We also found that the later stages of fracturing a given well were more successful in generating microearthquakes than the early stages. In Chapter 5, we present estimates of stress evolution in our study reservoir through analysis of the instantaneous shut-in pressure (ISIP) at the end of each stage. The ISIP increased stage by stage for all wells, but the simulfrac wells showed the greatest increase and the zipperfrac wells the least. We modeled the stress increase in the reservoir with a simple sequence of 2-D cracks along the length of the well. When using a spacing of one crack per stage, the modeled stress increase was nearly identical to the measured stress increase in the zipperfrac wells. When using three cracks per stage, the modeled final stage stress magnitude matched the measured final stage stress magnitude from the simulfrac wells, but the rate of stress increase in the simulfrac wells was much more gradual than the model predicted. To further investigate the causes of these ISIP trends, we began numerical flow and stress analysis to more realistically model the processes in the reservoir. One of our hypotheses was that the shorter total time needed to complete all the stages of the simulfrac wells was the cause of the greater ISIP increase compared to the zipperfrac wells. The microseismic activity level measured in Chapter 4 also correlates with total length of injection, suggesting leak off into the reservoir encouraged shear failure. Numerical modeling using the coupled FEM and flow software GEOSIM was able to model some cumulative stress increase the reservoir, but the full trend was not replicated. Further work to model field observations of hydraulic fracturing will enhance our understanding of the impact that hydraulic fracturing and stress change have on fracture creation and permeability enhancement in gas shales.
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 143
Book Description
This thesis presents five studies of a gas shale reservoir using diverse methodologies to investigate geomechanical and transport properties that are important across the full reservoir lifecycle. Using the Barnett shale as a case study, we investigated adsorption, permeability, geomechanics, microseismicity, and stress evolution in two different study areas. The main goals of this thesis can be divided into two parts: first, to investigate how flow properties evolve with changes in stress and gas species, and second, to understand how the interactions between stress, fractures, and microseismicity control the creation of a permeable reservoir volume during hydraulic fracturing. In Chapter 2, we present results from adsorption and permeability experiments conducted on Barnett shale rock samples. We found Langmuir-type adsorption of CH4 and N2 at magnitudes consistent with previous studies of the Barnett shale. Three of our samples demonstrated BET-type adsorption of CO2, in contrast to all previous studies on CO2 adsorption in gas shales, which found Langmuir-adsorption. At low pressures (600 psi), we found preferential adsorption of CO2 over CH4 ranging from 3.6x to 5.5x. While our measurements were conducted at low pressures (up to 1500 psi), when our model fits are extrapolated to reservoir pressures they reach similar adsorption magnitudes as have been found in previous studies. At these high reservoir pressures, the very large preferential adsorption of CO2 over CH4 (up to 5-10x) suggests a significant potential for CO2 storage in gas shales like the Barnett if practical problems of injectivity and matrix transport can be overcome. We successfully measured permeability versus effective stress on two intact Barnett shale samples. We measured permeability effective stress coefficients less than 1 on both samples, invalidating our hypothesis that there might be throughgoing flow paths within the soft, porous organic kerogen that would lead the permeability effective stress coefficient to be greater than 1. The results suggest that microcracks are likely the dominant flow paths at these scales. In Chapter 3, we present integrated geological, geophysical, and geomechanical data in order to characterize the rock properties in our Barnett shale study area and to model the stress state in the reservoir before hydraulic fracturing occurred. Five parallel, horizontal wells were drilled in the study area and then fractured using three different techniques. We used the well logs from a vertical pilot well and a horizontal well to constrain the stress state in the reservoir. While there was some variation along the length of the well, we were able to determine a best fit stress state of Pp = 0.48 psi/ft, Sv = 1.1 psi/ft, SHmax = 0.73 psi/ft, and Shmin = 0.68 psi/ft. Applying this stress state to the mapped natural fractures indicates that there is significant potential for induced shear slip on natural fracture planes in this region of the Barnett, particularly close to the main hydraulic fracture where the pore pressure increase during hydraulic fracturing is likely to be very high. In Chapter 4, we present new techniques to quantify the robustness of hydraulic fracturing in gas shale reservoirs. The case study we analyzed involves five parallel horizontal wells in the Barnett shale with 51 frac stages. To investigate the numbers, sizes, and types of microearthquakes initiated during each frac stage, we created Gutenberg-Richter-type magnitude distribution plots to see if the size of events follows the characteristic scaling relationship found in natural earthquakes. We found that slickwater fracturing does generate a log-linear distribution of microearthquakes, but that it creates proportionally more small events than natural earthquake sources. Finding considerable variability in the generation of microearthquakes, we used the magnitude analysis as a proxy for the "robustness" of the stimulation of a given stage. We found that the conventionally fractured well and the two alternately fractured wells ("zipperfracs") were more effective than the simultaneously fractured wells ("simulfracs") in generating microearthquakes. We also found that the later stages of fracturing a given well were more successful in generating microearthquakes than the early stages. In Chapter 5, we present estimates of stress evolution in our study reservoir through analysis of the instantaneous shut-in pressure (ISIP) at the end of each stage. The ISIP increased stage by stage for all wells, but the simulfrac wells showed the greatest increase and the zipperfrac wells the least. We modeled the stress increase in the reservoir with a simple sequence of 2-D cracks along the length of the well. When using a spacing of one crack per stage, the modeled stress increase was nearly identical to the measured stress increase in the zipperfrac wells. When using three cracks per stage, the modeled final stage stress magnitude matched the measured final stage stress magnitude from the simulfrac wells, but the rate of stress increase in the simulfrac wells was much more gradual than the model predicted. To further investigate the causes of these ISIP trends, we began numerical flow and stress analysis to more realistically model the processes in the reservoir. One of our hypotheses was that the shorter total time needed to complete all the stages of the simulfrac wells was the cause of the greater ISIP increase compared to the zipperfrac wells. The microseismic activity level measured in Chapter 4 also correlates with total length of injection, suggesting leak off into the reservoir encouraged shear failure. Numerical modeling using the coupled FEM and flow software GEOSIM was able to model some cumulative stress increase the reservoir, but the full trend was not replicated. Further work to model field observations of hydraulic fracturing will enhance our understanding of the impact that hydraulic fracturing and stress change have on fracture creation and permeability enhancement in gas shales.
Naturally Fractured Reservoirs
Author: Roberto Aguilera
Publisher: PennWell Books
ISBN:
Category : Science
Languages : en
Pages : 730
Book Description
This book deals exclusively with naturally fractured reservoirs and includes many subjects usually treated in separate volumes. A highly practical edition, Naturally Fractured Reservoirs is written for students, reservoir geologists, log analysts and petroleum engineers.
Publisher: PennWell Books
ISBN:
Category : Science
Languages : en
Pages : 730
Book Description
This book deals exclusively with naturally fractured reservoirs and includes many subjects usually treated in separate volumes. A highly practical edition, Naturally Fractured Reservoirs is written for students, reservoir geologists, log analysts and petroleum engineers.
Rock Fractures and Fluid Flow
Author: Committee on Fracture Characterization and Fluid Flow
Publisher: National Academies Press
ISBN: 0309563488
Category : Science
Languages : en
Pages : 568
Book Description
Scientific understanding of fluid flow in rock fractures--a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storage--has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.
Publisher: National Academies Press
ISBN: 0309563488
Category : Science
Languages : en
Pages : 568
Book Description
Scientific understanding of fluid flow in rock fractures--a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storage--has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.
Characterization, Modeling, Monitoring, and Remediation of Fractured Rock
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309373727
Category : Science
Languages : en
Pages : 177
Book Description
Fractured rock is the host or foundation for innumerable engineered structures related to energy, water, waste, and transportation. Characterizing, modeling, and monitoring fractured rock sites is critical to the functioning of those infrastructure, as well as to optimizing resource recovery and contaminant management. Characterization, Modeling, Monitoring, and Remediation of Fractured Rock examines the state of practice and state of art in the characterization of fractured rock and the chemical and biological processes related to subsurface contaminant fate and transport. This report examines new developments, knowledge, and approaches to engineering at fractured rock sites since the publication of the 1996 National Research Council report Rock Fractures and Fluid Flow: Contemporary Understanding and Fluid Flow. Fundamental understanding of the physical nature of fractured rock has changed little since 1996, but many new characterization tools have been developed, and there is now greater appreciation for the importance of chemical and biological processes that can occur in the fractured rock environment. The findings of Characterization, Modeling, Monitoring, and Remediation of Fractured Rock can be applied to all types of engineered infrastructure, but especially to engineered repositories for buried or stored waste and to fractured rock sites that have been contaminated as a result of past disposal or other practices. The recommendations of this report are intended to help the practitioner, researcher, and decision maker take a more interdisciplinary approach to engineering in the fractured rock environment. This report describes how existing tools-some only recently developed-can be used to increase the accuracy and reliability of engineering design and management given the interacting forces of nature. With an interdisciplinary approach, it is possible to conceptualize and model the fractured rock environment with acceptable levels of uncertainty and reliability, and to design systems that maximize remediation and long-term performance. Better scientific understanding could inform regulations, policies, and implementation guidelines related to infrastructure development and operations. The recommendations for research and applications to enhance practice of this book make it a valuable resource for students and practitioners in this field.
Publisher: National Academies Press
ISBN: 0309373727
Category : Science
Languages : en
Pages : 177
Book Description
Fractured rock is the host or foundation for innumerable engineered structures related to energy, water, waste, and transportation. Characterizing, modeling, and monitoring fractured rock sites is critical to the functioning of those infrastructure, as well as to optimizing resource recovery and contaminant management. Characterization, Modeling, Monitoring, and Remediation of Fractured Rock examines the state of practice and state of art in the characterization of fractured rock and the chemical and biological processes related to subsurface contaminant fate and transport. This report examines new developments, knowledge, and approaches to engineering at fractured rock sites since the publication of the 1996 National Research Council report Rock Fractures and Fluid Flow: Contemporary Understanding and Fluid Flow. Fundamental understanding of the physical nature of fractured rock has changed little since 1996, but many new characterization tools have been developed, and there is now greater appreciation for the importance of chemical and biological processes that can occur in the fractured rock environment. The findings of Characterization, Modeling, Monitoring, and Remediation of Fractured Rock can be applied to all types of engineered infrastructure, but especially to engineered repositories for buried or stored waste and to fractured rock sites that have been contaminated as a result of past disposal or other practices. The recommendations of this report are intended to help the practitioner, researcher, and decision maker take a more interdisciplinary approach to engineering in the fractured rock environment. This report describes how existing tools-some only recently developed-can be used to increase the accuracy and reliability of engineering design and management given the interacting forces of nature. With an interdisciplinary approach, it is possible to conceptualize and model the fractured rock environment with acceptable levels of uncertainty and reliability, and to design systems that maximize remediation and long-term performance. Better scientific understanding could inform regulations, policies, and implementation guidelines related to infrastructure development and operations. The recommendations for research and applications to enhance practice of this book make it a valuable resource for students and practitioners in this field.
Applied Concepts in Fractured Reservoirs
Author: John C. Lorenz
Publisher: John Wiley & Sons
ISBN: 1119055962
Category : Science
Languages : en
Pages : 233
Book Description
A much-needed, precise and practical treatment of a key topic in the energy industry and beyond, Applied Concepts in Fractured Reservoirs is an invaluable reference for those in both industry and academia Authored by renowned experts in the field, this book covers the understanding, evaluation, and effects of fractures in reservoirs. It offers a comprehensive yet practical discussion and description of natural fractures, their origins, characteristics, and effects on hydrocarbon reservoirs. It starts by introducing the reader to basic definitions and classifications of fractures and fractured reservoirs. It then provides an outline for fractured-reservoir characterization and analysis, and goes on to introduce the way fractures impact operational activities. Well organized and clearly illustrated throughout, Applied Concepts in Fractured Reservoirs starts with a section on understanding natural fractures. It looks at the different types, their dimensions, and the mechanics of fracturing rock in extension and shear. The next section provides information on measuring and analyzing fractures in reservoirs. It covers: logging core for fractures; taking, measuring, and analyzing fracture data; new core vs. archived core; CT scans; comparing fracture data from outcrops, core, and logs; and more. The last part examines the effects of natural fractures on reservoirs, including: the permeability behavior of individual fractures and fracture systems; fracture volumetrics; effects of fractures on drilling and coring; and the interaction between natural and hydraulic fractures. Teaches readers to understand and evaluate fractures Compiles and synthesizes various concepts and descriptions scattered in literature and synthesizes them with unpublished oil-field observations and data, along with the authors’ own experience Bridges some of the gaps between reservoir engineers and geologists Provides an invaluable reference for geologists and engineers who need to understand naturally fractured reservoirs in order to efficiently extract hydrocarbons Illustrated in full color throughout Companion volume to the Atlas of Natural and Induced Fractures in Core
Publisher: John Wiley & Sons
ISBN: 1119055962
Category : Science
Languages : en
Pages : 233
Book Description
A much-needed, precise and practical treatment of a key topic in the energy industry and beyond, Applied Concepts in Fractured Reservoirs is an invaluable reference for those in both industry and academia Authored by renowned experts in the field, this book covers the understanding, evaluation, and effects of fractures in reservoirs. It offers a comprehensive yet practical discussion and description of natural fractures, their origins, characteristics, and effects on hydrocarbon reservoirs. It starts by introducing the reader to basic definitions and classifications of fractures and fractured reservoirs. It then provides an outline for fractured-reservoir characterization and analysis, and goes on to introduce the way fractures impact operational activities. Well organized and clearly illustrated throughout, Applied Concepts in Fractured Reservoirs starts with a section on understanding natural fractures. It looks at the different types, their dimensions, and the mechanics of fracturing rock in extension and shear. The next section provides information on measuring and analyzing fractures in reservoirs. It covers: logging core for fractures; taking, measuring, and analyzing fracture data; new core vs. archived core; CT scans; comparing fracture data from outcrops, core, and logs; and more. The last part examines the effects of natural fractures on reservoirs, including: the permeability behavior of individual fractures and fracture systems; fracture volumetrics; effects of fractures on drilling and coring; and the interaction between natural and hydraulic fractures. Teaches readers to understand and evaluate fractures Compiles and synthesizes various concepts and descriptions scattered in literature and synthesizes them with unpublished oil-field observations and data, along with the authors’ own experience Bridges some of the gaps between reservoir engineers and geologists Provides an invaluable reference for geologists and engineers who need to understand naturally fractured reservoirs in order to efficiently extract hydrocarbons Illustrated in full color throughout Companion volume to the Atlas of Natural and Induced Fractures in Core
Reservoir Geomechanics
Author: Mark D. Zoback
Publisher: Cambridge University Press
ISBN: 1107320089
Category : Technology & Engineering
Languages : en
Pages : 505
Book Description
This interdisciplinary book encompasses the fields of rock mechanics, structural geology and petroleum engineering to address a wide range of geomechanical problems that arise during the exploitation of oil and gas reservoirs. It considers key practical issues such as prediction of pore pressure, estimation of hydrocarbon column heights and fault seal potential, determination of optimally stable well trajectories, casing set points and mud weights, changes in reservoir performance during depletion, and production-induced faulting and subsidence. The book establishes the basic principles involved before introducing practical measurement and experimental techniques to improve recovery and reduce exploitation costs. It illustrates their successful application through case studies taken from oil and gas fields around the world. This book is a practical reference for geoscientists and engineers in the petroleum and geothermal industries, and for research scientists interested in stress measurements and their application to problems of faulting and fluid flow in the crust.
Publisher: Cambridge University Press
ISBN: 1107320089
Category : Technology & Engineering
Languages : en
Pages : 505
Book Description
This interdisciplinary book encompasses the fields of rock mechanics, structural geology and petroleum engineering to address a wide range of geomechanical problems that arise during the exploitation of oil and gas reservoirs. It considers key practical issues such as prediction of pore pressure, estimation of hydrocarbon column heights and fault seal potential, determination of optimally stable well trajectories, casing set points and mud weights, changes in reservoir performance during depletion, and production-induced faulting and subsidence. The book establishes the basic principles involved before introducing practical measurement and experimental techniques to improve recovery and reduce exploitation costs. It illustrates their successful application through case studies taken from oil and gas fields around the world. This book is a practical reference for geoscientists and engineers in the petroleum and geothermal industries, and for research scientists interested in stress measurements and their application to problems of faulting and fluid flow in the crust.
Geologic Analysis of Naturally Fractured Reservoirs
Author: Ronald Nelson
Publisher: Elsevier
ISBN: 0080507298
Category : Technology & Engineering
Languages : en
Pages : 353
Book Description
Geologists, engineers, and petrophysicists concerned with hydrocarbon production from naturally fractured reservoirs will find this book a valuable tool for obtaining pertinent rock data to evaluate reserves and optimize well location and performance. Nelson emphasizes geological, petrophysical, and rock mechanics to complement other studies of the subject that use well logging and classical engineering approaches. This well organized, updated edition contains a wealth of field and laboratory data, case histories, and practical advice. - A great how-to-guide for anyone working with fractured or highly anisotropic reservoirs - Provides real-life illustrations through case histories and field and laboratory data
Publisher: Elsevier
ISBN: 0080507298
Category : Technology & Engineering
Languages : en
Pages : 353
Book Description
Geologists, engineers, and petrophysicists concerned with hydrocarbon production from naturally fractured reservoirs will find this book a valuable tool for obtaining pertinent rock data to evaluate reserves and optimize well location and performance. Nelson emphasizes geological, petrophysical, and rock mechanics to complement other studies of the subject that use well logging and classical engineering approaches. This well organized, updated edition contains a wealth of field and laboratory data, case histories, and practical advice. - A great how-to-guide for anyone working with fractured or highly anisotropic reservoirs - Provides real-life illustrations through case histories and field and laboratory data
Unconventional Reservoir Geomechanics
Author: Mark D. Zoback
Publisher: Cambridge University Press
ISBN: 1107087074
Category : Business & Economics
Languages : en
Pages : 495
Book Description
A comprehensive overview of the key geologic, geomechanical and engineering principles that govern the development of unconventional oil and gas reservoirs. Covering hydrocarbon-bearing formations, horizontal drilling, reservoir seismology and environmental impacts, this is an invaluable resource for geologists, geophysicists and reservoir engineers.
Publisher: Cambridge University Press
ISBN: 1107087074
Category : Business & Economics
Languages : en
Pages : 495
Book Description
A comprehensive overview of the key geologic, geomechanical and engineering principles that govern the development of unconventional oil and gas reservoirs. Covering hydrocarbon-bearing formations, horizontal drilling, reservoir seismology and environmental impacts, this is an invaluable resource for geologists, geophysicists and reservoir engineers.
Fundamental And Applied Pressure Analysis
Author: Tayyar Sezgin Daltaban
Publisher: World Scientific
ISBN: 1911298771
Category : Technology & Engineering
Languages : en
Pages : 831
Book Description
The analysis of well tests constitutes one of the most powerful tools for the effective description of a petroleum reservoir and its subsequent management. This requires that the well test be placed in the proper context of related disciplines, especially geoscience, production and reservoir engineering. Modern methods of automated data processing can conceal mathematical limitations and overlook the need for realistic physical and geologic models. This book emphasizes the plausible physical contexts and mathematical models and limitations, and also the importance of realistic geologic models in analysis.Although the book is clearly targeted at petroleum engineers, the approach taken by the authors will no doubt find favour with practitioners in other areas of fluid flow in porous media, such as hydrology and the flow of pollutants. Scattered throughout the book are worked examples of the use of the methods described in the text. It also contains extensive appendices on permeability, application of Laplace transforms to flow equations valid for single and multi-layered systems, convolution and deconvolution, dimensionless parameters and P-theorems, and physical and thermodynamic properties of gases. This book should appeal to students as well as practitioners in industry; many in the latter group may have benefited before from formal exposure to the underlying theory and its limitations in real reservoir environments.
Publisher: World Scientific
ISBN: 1911298771
Category : Technology & Engineering
Languages : en
Pages : 831
Book Description
The analysis of well tests constitutes one of the most powerful tools for the effective description of a petroleum reservoir and its subsequent management. This requires that the well test be placed in the proper context of related disciplines, especially geoscience, production and reservoir engineering. Modern methods of automated data processing can conceal mathematical limitations and overlook the need for realistic physical and geologic models. This book emphasizes the plausible physical contexts and mathematical models and limitations, and also the importance of realistic geologic models in analysis.Although the book is clearly targeted at petroleum engineers, the approach taken by the authors will no doubt find favour with practitioners in other areas of fluid flow in porous media, such as hydrology and the flow of pollutants. Scattered throughout the book are worked examples of the use of the methods described in the text. It also contains extensive appendices on permeability, application of Laplace transforms to flow equations valid for single and multi-layered systems, convolution and deconvolution, dimensionless parameters and P-theorems, and physical and thermodynamic properties of gases. This book should appeal to students as well as practitioners in industry; many in the latter group may have benefited before from formal exposure to the underlying theory and its limitations in real reservoir environments.