Categories of Operator Modules (Morita Equivalence and Projective Modules) PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Categories of Operator Modules (Morita Equivalence and Projective Modules) PDF full book. Access full book title Categories of Operator Modules (Morita Equivalence and Projective Modules) by David P. Blecher. Download full books in PDF and EPUB format.

Categories of Operator Modules (Morita Equivalence and Projective Modules)

Categories of Operator Modules (Morita Equivalence and Projective Modules) PDF Author: David P. Blecher
Publisher: American Mathematical Soc.
ISBN: 082181916X
Category : Mathematics
Languages : en
Pages : 109

Book Description
We employ recent advances in the theory of operator spaces, also known as quantized functional analysis, to provide a context in which one can compare categories of modules over operator algebras that are not necessarily self-adjoint. We focus our attention on the category of Hilbert modules over an operator algebra and on the category of operator modules over an operator algebra. The module operations are assumed to be completely bounded - usually, completely contractive. Wedevelop the notion of a Morita context between two operator algebras A and B. This is a system (A,B,{} {A}X {B},{} {B} Y {A},(\cdot,\cdot),[\cdot,\cdot]) consisting of the algebras, two bimodules {A}X {B and {B}Y {A} and pairings (\cdot,\cdot) and [\cdot,\cdot] that induce (complete) isomorphisms betweenthe (balanced) Haagerup tensor products, X \otimes {hB} {} Y and Y \otimes {hA} {} X, and the algebras, A and B, respectively. Thus, formally, a Morita context is the same as that which appears in pure ring theory. The subtleties of the theory lie in the interplay between the pure algebra and the operator space geometry. Our analysis leads to viable notions of projective operator modules and dual operator modules. We show that two C*-algebras are Morita equivalent in our sense if and only ifthey are C*-algebraically strong Morita equivalent, and moreover the equivalence bimodules are the same. The distinctive features of the non-self-adjoint theory are illuminated through a number of examples drawn from complex analysis and the theory of incidence algebras over topological partial orders.Finally, an appendix provides links to the literature that developed since this Memoir was accepted for publication.

Categories of Operator Modules (Morita Equivalence and Projective Modules)

Categories of Operator Modules (Morita Equivalence and Projective Modules) PDF Author: David P. Blecher
Publisher: American Mathematical Soc.
ISBN: 082181916X
Category : Mathematics
Languages : en
Pages : 109

Book Description
We employ recent advances in the theory of operator spaces, also known as quantized functional analysis, to provide a context in which one can compare categories of modules over operator algebras that are not necessarily self-adjoint. We focus our attention on the category of Hilbert modules over an operator algebra and on the category of operator modules over an operator algebra. The module operations are assumed to be completely bounded - usually, completely contractive. Wedevelop the notion of a Morita context between two operator algebras A and B. This is a system (A,B,{} {A}X {B},{} {B} Y {A},(\cdot,\cdot),[\cdot,\cdot]) consisting of the algebras, two bimodules {A}X {B and {B}Y {A} and pairings (\cdot,\cdot) and [\cdot,\cdot] that induce (complete) isomorphisms betweenthe (balanced) Haagerup tensor products, X \otimes {hB} {} Y and Y \otimes {hA} {} X, and the algebras, A and B, respectively. Thus, formally, a Morita context is the same as that which appears in pure ring theory. The subtleties of the theory lie in the interplay between the pure algebra and the operator space geometry. Our analysis leads to viable notions of projective operator modules and dual operator modules. We show that two C*-algebras are Morita equivalent in our sense if and only ifthey are C*-algebraically strong Morita equivalent, and moreover the equivalence bimodules are the same. The distinctive features of the non-self-adjoint theory are illuminated through a number of examples drawn from complex analysis and the theory of incidence algebras over topological partial orders.Finally, an appendix provides links to the literature that developed since this Memoir was accepted for publication.

Quantum Linear Groups and Representations of $GL_n({\mathbb F}_q)$

Quantum Linear Groups and Representations of $GL_n({\mathbb F}_q)$ PDF Author: Jonathan Brundan
Publisher: American Mathematical Soc.
ISBN: 0821826166
Category : Mathematics
Languages : en
Pages : 127

Book Description
We give a self-contained account of the results originating in the work of James and the second author in the 1980s relating the representation theory of GL[n(F[q) over fields of characteristic coprime to q to the representation theory of "quantum GL[n" at roots of unity. The new treatment allows us to extend the theory in several directions. First, we prove a precise functorial connection between the operations of tensor product in quantum GL[n and Harish-Chandra induction in finite GL[n. This allows us to obtain a version of the recent Morita theorem of Cline, Parshall and Scott valid in addition for p-singular classes. From that we obtain simplified treatments of various basic known facts, such as the computation of decomposition numbers and blocks of GL[n(F[q) from knowledge of the same for the quantum group, and the non-defining analogue of Steinberg's tensor product theorem. We also easily obtain a new double centralizer property between GL[n(F[[q) and quantum GL[n, generalizing a result of Takeuchi. Finally, we apply the theory to study the affine general linear group, following ideas of Zelevinsky in characteristic zero. We prove results that can be regarded as the modular analogues of Zelevinsky's and Thoma's branching rules. Using these, we obtain a new dimension formula for the irreducible cross-characteristic representations of GL[n(F[q), expressing their dimensions in terms of the characters of irreducible modules over the quantum group.

Non-Additive Exact Functors and Tensor Induction for Mackey Functors

Non-Additive Exact Functors and Tensor Induction for Mackey Functors PDF Author: Serge Bouc
Publisher: American Mathematical Soc.
ISBN: 0821819518
Category : Mathematics
Languages : en
Pages : 89

Book Description
First the author introduces a generalization of the notion of (right)-exact functor between abelian categories to the case of non-additive functors. The main result of this section is an extension theorem: any functor defined on a suitable subcategory can be extended uniquely to a right exact functor defined on the whole category. Next those results are used to define various functors of generalized tensor induction, associated to finite bisets, between categories attached to finite groups. This includes a definition of tensor induction for Mackey functors, for cohomological Mackey functors, for p-permutation modules and algebras. This also gives a single formalism of bisets for restriction, inflation, and ordinary tensor induction for modules.

Rational Homotopical Models and Uniqueness

Rational Homotopical Models and Uniqueness PDF Author: Martin Majewski
Publisher: American Mathematical Soc.
ISBN: 0821819208
Category : Mathematics
Languages : en
Pages : 175

Book Description
The main goal of this paper is to prove the following conjecture of Baues and Lemaire: the differential graded Lie Tlgebra associated with the Sullivan model of a space is homotopy equivalent to its Quillen model. In addition we show the same for the cellular Lie algebra model which we build from the simplicial analog of the classical Adams-Hilton model. It turns out that this cellular Lie algebra model is one link in a chain of models connecting the models of Quillen and Sullivan.The key result which makes all this possible is Anick's correspondence between differential graded Lie algebras and Hopf algebras up to homotopy. In addition we show that the Quillen model is a rational homotopical equivalence, and we conclude the same for the other models using our main result. Theconstruction of the three models is given in detail. The background from homotopy theory, differential algebra, and algebra is presented in great generality.

The Decomposition and Classification of Radiant Affine 3-Manifolds

The Decomposition and Classification of Radiant Affine 3-Manifolds PDF Author: Suhyoung Choi
Publisher: American Mathematical Soc.
ISBN: 0821827049
Category : Mathematics
Languages : en
Pages : 137

Book Description
An affine manifold is a manifold with torsion-free flat affine connection - a geometric topologist would define it as a manifold with an atlas of charts to the affine space with affine transition functions. This title is an in-depth examination of the decomposition and classification of radiant affine 3-manifolds - affine manifolds of the type that have a holonomy group consisting of affine transformations fixing a common fixed point.

Tilings of the Plane, Hyperbolic Groups and Small Cancellation Conditions

Tilings of the Plane, Hyperbolic Groups and Small Cancellation Conditions PDF Author: Milé Krajčevski
Publisher: American Mathematical Soc.
ISBN: 0821827626
Category : Mathematics
Languages : en
Pages : 74

Book Description
This book is intended for graduate students and research mathematicians interested in group theory and generalizations.

Invariant Subspaces

Invariant Subspaces PDF Author: Heydar Radjavi
Publisher: Courier Corporation
ISBN: 0486153029
Category : Mathematics
Languages : en
Pages : 270

Book Description
Broad survey focuses on operators on separable Hilbert spaces. Topics include normal operators, analytic functions of operators, shift operators, invariant subspace lattices, compact operators, invariant and hyperinvariant subspaces, more. 1973 edition.

Inverse Invariant Theory and Steenrod Operations

Inverse Invariant Theory and Steenrod Operations PDF Author: Mara D. Neusel
Publisher: American Mathematical Soc.
ISBN: 0821820915
Category : Mathematics
Languages : en
Pages : 175

Book Description
This book is intended for researchers and graduate students in commutative algebra, algebraic topology and invariant theory.

Theory of Operator Spaces

Theory of Operator Spaces PDF Author: Edward G. Effros
Publisher: American Mathematical Society
ISBN: 1470465051
Category : Mathematics
Languages : en
Pages : 358

Book Description
This book provides the main results and ideas in the theories of completely bounded maps, operator spaces, and operator algebras, along with some of their main applications. It requires only a basic background in functional analysis to read through the book. The descriptions and discussions of the topics are self-explained. It is appropriate for graduate students new to the subject and the field. The book starts with the basic representation theorems for abstract operator spaces and their mappings, followed by a discussion of tensor products and the analogue of Grothendieck's approximation property. Next, the operator space analogues of the nuclear, integral, and absolutely summing mappings are discussed. In what is perhaps the deepest part of the book, the authors present the remarkable “non-classical” phenomena that occur when one considers local reflexivity and exactness for operator spaces. This is an area of great beauty and depth, and it represents one of the triumphs of the subject. In the final part of the book, the authors consider applications to non-commutative harmonic analysis and non-self-adjoint operator algebra theory. Operator space theory provides a synthesis of Banach space theory with the non-commuting variables of operator algebra theory, and it has led to exciting new approaches in both disciplines. This book is an indispensable introduction to the theory of operator spaces.

Generalized Whittaker Functions on $SU(2,2)$ with Respect to the Siegel Parabolic Subgroup

Generalized Whittaker Functions on $SU(2,2)$ with Respect to the Siegel Parabolic Subgroup PDF Author: Yasuro Gon
Publisher: American Mathematical Soc.
ISBN: 0821827634
Category : Mathematics
Languages : en
Pages : 130

Book Description
Obtains an explicit formula for generalized Whittaker functions and multiplicity one theorem for all discrete series representations of $SU(2,2)$.