Catalysts and Materials Development for Fuel Cell Power Generation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Catalysts and Materials Development for Fuel Cell Power Generation PDF full book. Access full book title Catalysts and Materials Development for Fuel Cell Power Generation by Steven E. Weiss. Download full books in PDF and EPUB format.

Catalysts and Materials Development for Fuel Cell Power Generation

Catalysts and Materials Development for Fuel Cell Power Generation PDF Author: Steven E. Weiss
Publisher:
ISBN:
Category :
Languages : en
Pages : 110

Book Description
Catalytic processing of fuels was explored in this thesis for both low-temperature polymer electrolyte membrane (PEM) fuel cell as well as high-temperature solid oxide fuel cell (SOFC) applications. Novel catalysts were developed to generate hydrogen for PEM applications from the oxidative steam reforming of methanol. The activity of lanthanum nickel perovskite (LaNiO3) was examined in both dilute fuel and full fuel conditions. Autothermal operation was successfully achieved with higher hydrogen selectivity than conventional Pd-based catalysts. The selected complex oxide catalyst was applied as a thin film onto a 0.2 [mu]m-thick Pd membrane. Pure hydrogen effluent was obtained from the resulting microreactor as desired for PEM applications. SOFC systems would be of interest for portable power generation if the thermal cycling and slow start-up issues could be addressed. One potential solution is the development of Si-supported ultrathin electrolyte structures (~100 nm-thick) of low thermal mass. Due to the low maximum fabrication temperature (

Catalysts and Materials Development for Fuel Cell Power Generation

Catalysts and Materials Development for Fuel Cell Power Generation PDF Author: Steven E. Weiss
Publisher:
ISBN:
Category :
Languages : en
Pages : 110

Book Description
Catalytic processing of fuels was explored in this thesis for both low-temperature polymer electrolyte membrane (PEM) fuel cell as well as high-temperature solid oxide fuel cell (SOFC) applications. Novel catalysts were developed to generate hydrogen for PEM applications from the oxidative steam reforming of methanol. The activity of lanthanum nickel perovskite (LaNiO3) was examined in both dilute fuel and full fuel conditions. Autothermal operation was successfully achieved with higher hydrogen selectivity than conventional Pd-based catalysts. The selected complex oxide catalyst was applied as a thin film onto a 0.2 [mu]m-thick Pd membrane. Pure hydrogen effluent was obtained from the resulting microreactor as desired for PEM applications. SOFC systems would be of interest for portable power generation if the thermal cycling and slow start-up issues could be addressed. One potential solution is the development of Si-supported ultrathin electrolyte structures (~100 nm-thick) of low thermal mass. Due to the low maximum fabrication temperature (

Fuel Cell Science and Engineering

Fuel Cell Science and Engineering PDF Author: Detlef Stolten
Publisher: John Wiley & Sons
ISBN: 3527650261
Category : Science
Languages : en
Pages : 1298

Book Description
Fuel cells are expected to play a major role in the future power supply that will transform to renewable, decentralized and fluctuating primary energies. At the same time the share of electric power will continually increase at the expense of thermal and mechanical energy not just in transportation, but also in households. Hydrogen as a perfect fuel for fuel cells and an outstanding and efficient means of bulk storage for renewable energy will spearhead this development together with fuel cells. Moreover, small fuel cells hold great potential for portable devices such as gadgets and medical applications such as pacemakers. This handbook will explore specific fuel cells within and beyond the mainstream development and focuses on materials and production processes for both SOFC and lowtemperature fuel cells, analytics and diagnostics for fuel cells, modeling and simulation as well as balance of plant design and components. As fuel cells are getting increasingly sophisticated and industrially developed the issues of quality assurance and methodology of development are included in this handbook. The contributions to this book come from an international panel of experts from academia, industry, institutions and government. This handbook is oriented toward people looking for detailed information on specific fuel cell types, their materials, production processes, modeling and analytics. Overview information on the contrary on mainstream fuel cells and applications are provided in the book 'Hydrogen and Fuel Cells', published in 2010.

Fuel Processing

Fuel Processing PDF Author: Gunther Kolb
Publisher: John Wiley & Sons
ISBN: 9783527315819
Category : Technology & Engineering
Languages : en
Pages : 448

Book Description
Adopting a unique integrated engineering approach, this text covers all aspects of fuel processing: catalysts, reactors, chemical plant components and integrated system design. While providing an introduction to the subject, it also contains recent research developments, making this an invaluable handbook for chemical, power and process engineers, electrochemists, catalytic chemists, materials scientists and engineers in power technology.

One-dimensional Nanostructures for PEM Fuel Cell Applications

One-dimensional Nanostructures for PEM Fuel Cell Applications PDF Author: Shangfeng Du
Publisher: Academic Press
ISBN: 0128111135
Category : Technology & Engineering
Languages : en
Pages : 97

Book Description
One-dimensional Nanostructures for PEM Fuel Cell Applications provides a review of the progress made in 1D catalysts for applications in polymer electrolyte fuel cells. It highlights the improved understanding of catalytic mechanisms on 1D nanostructures and the new approaches developed for practical applications, also including a critical perspective on current research limits. The book serves as a reference for the design and development of a new generation of catalysts to assist in the realization of successful commercial use that have the potential to decarbonize the domestic heat and transport sectors. In addition, a further commercialization of this technology requires advanced catalysts to address major obstacles faced by the commonly used Pt/C nanoparticles. The unique structure of one-dimensional nanostructures give them advantages to overcome some drawbacks of Pt/C nanoparticles as a new type of excellent catalysts for fuel cell reactions. In recent years, great efforts have been devoted in this area, and much progress has been achieved. Provides a review of 1D catalysts for applications in polymer electrolyte fuel cells Presents an ideal reference for the design and development of a new generation of catalysts to assist in the realization of successful commercial use Highlights the progress made in recent years in this emerging field

Materials for Low-Temperature Fuel Cells

Materials for Low-Temperature Fuel Cells PDF Author: Bradley Ladewig
Publisher: John Wiley & Sons
ISBN: 3527330429
Category : Technology & Engineering
Languages : en
Pages : 272

Book Description
There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in Low-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in low-temperature fuel cells. A related book will cover key materials in high-temperature fuel cells. The two books form part of the "Materials for Sustainable Energy & Development" series. Key Materials in Low-Temperature Fuel Cells brings together world leaders and experts in this field and provides a lucid description of the materials assessment of fuel cell technologies. With an emphasis on the technical development and applications of key materials in low-temperature fuel cells, this text covers fundamental principles, advancement, challenges, and important current research themes. Topics covered include: proton exchange membrane fuel cells, direct methanol and ethanol fuel cells, microfluidic fuel cells, biofuel cells, alkaline membrane fuel cells, functionalized carbon nanotubes as catalyst supports, nanostructured Pt catalysts, non-PGM catalysts, membranes, and materials modeling. This book is an essential reference source for researchers, engineers and technicians in academia, research institutes and industry working in the fields of fuel cells, energy materials, electrochemistry and materials science and engineering.

Nanostructured and Advanced Materials for Fuel Cells

Nanostructured and Advanced Materials for Fuel Cells PDF Author: San Ping Jiang
Publisher: CRC Press
ISBN: 1466512504
Category : Science
Languages : en
Pages : 614

Book Description
Boasting chapters written by leading international experts, Nanostructured and Advanced Materials for Fuel Cells provides an overview of the progress that has been made so far in the material and catalyst development for fuel cells. The book covers the most recent developments detailing all aspects of synthesis, characterization, and performance. It offers an overview on the principles, classifications, and types of fuels used in fuel cells, and discusses the critical properties, design, and advances made in various sealing materials. It provides an extensive review on the design, configuration, fabrication, modeling, materials, and stack performance of μ-SOFC technology, and addresses the advancement and challenges in the synthesis, characterization, and fundamental understanding of the catalytic activity of nitrogen-carbon, carbon, and noncarbon-based electro catalysts for PEM fuel cells. The authors explore the atomic layer deposition (ALD) technique, summarize the advancements in the fundamental understanding of the most successful Nafion membranes, and focus on the development of alternative and composite membranes for direct alcohol fuel cells (DAFCs). They also review current challenges and consider future development in the industry. Includes 17 chapters, 262 figures, and close to 2000 references Provides an extensive review of the carbon, nitrogen-carbon, and noncarbon-based electro catalysts for fuel cells Presents an update on the latest materials development in conventional fuel cells and emerging fuel cells This text is a single-source reference on the latest advances in the nano-structured materials and electro catalysts for fuel cells, the most efficient and emerging energy conversion technologies for the twenty-first century. It serves as a valuable resource for students, materials engineers, and researchers interested in fuel cell technology.

Materials for Fuel Cells

Materials for Fuel Cells PDF Author: M Gasik
Publisher: Elsevier
ISBN: 184569483X
Category : Technology & Engineering
Languages : en
Pages : 513

Book Description
A fuel cell is an electrochemical device that converts the chemical energy of a reaction (between fuel and oxidant) directly into electricity. Given their efficiency and low emissions, fuel cells provide an important alternative to power produced from fossil fuels. A major challenge in their use is the need for better materials to make fuel cells cost-effective and more durable. This important book reviews developments in materials to fulfil the potential of fuel cells as a major power source. After introductory chapters on the key issues in fuel cell materials research, the book reviews the major types of fuel cell. These include alkaline fuel cells, polymer electrolyte fuel cells, direct methanol fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, solid oxide fuel cells and regenerative fuel cells. The book concludes with reviews of novel fuel cell materials, ways of analysing performance and issues affecting recyclability and life cycle assessment. With its distinguished editor and international team of contributors, Materials for fuel cells is a valuable reference for all those researching, manufacturing and using fuel cells in such areas as automotive engineering. Examines the key issues in fuel cell materials research Reviews the major types of fuel cells such as direct methanol and regenerative fuel cells Further chapters explore ways of analysing performance and issues affecting recyclability and life cycle assessment

Nanostructured and Advanced Materials for Fuel Cells

Nanostructured and Advanced Materials for Fuel Cells PDF Author: San Ping Jiang
Publisher: CRC Press
ISBN: 9781306136921
Category : Science
Languages : en
Pages : 582

Book Description
Boasting chapters written by leading international experts, Nanostructured and Advanced Materials for Fuel Cells provides an overview of the progress that has been made so far in the material and catalyst development for fuel cells. The book covers the most recent developments detailing all aspects of synthesis, characterization, and performance. It offers an overview on the principles, classifications, and types of fuels used in fuel cells, and discusses the critical properties, design, and advances made in various sealing materials. It provides an extensive review on the design, configuration, fabrication, modeling, materials, and stack performance of u-SOFC technology, and addresses the advancement and challenges in the synthesis, characterization, and fundamental understanding of the catalytic activity of nitrogen-carbon, carbon, and noncarbon-based electro catalysts for PEM fuel cells. The authors explore the atomic layer deposition (ALD) technique, summarize the advancements in the fundamental understanding of the most successful Nafion membranes, and focus on the development of alternative and composite membranes for direct alcohol fuel cells (DAFCs). They also review current challenges and consider future development in the industry. Includes 17 chapters, 262 figures, and close to 2000 references Provides an extensive review of the carbon, nitrogen-carbon, and noncarbon-based electro catalysts for fuel cells Presents an update on the latest materials development in conventional fuel cells and emerging fuel cells This text is a single-source reference on the latest advances in the nano-structured materials and electro catalysts for fuel cells, the most efficient and emerging energy conversion technologies for the twenty-first century. It serves as a valuable resource for students, materials engineers, and researchers interested in fuel cell technology."

Present Trends in Fuel Cell Technology Development

Present Trends in Fuel Cell Technology Development PDF Author: N. Rajalakshmi
Publisher: Nova Publishers
ISBN: 9781604562118
Category : Science
Languages : en
Pages : 154

Book Description
In this book the authors assess the technology for fuel cells in terms of processes and basic science, materials, applications and infrastructure. Each section is devoted to a particular type of fuel cell technology covering all the aspects of processes, materials, application, technology, challenges and present trends.

Hydrogen Energy and Fuel Cells

Hydrogen Energy and Fuel Cells PDF Author: European Commission. Directorate General for Research
Publisher:
ISBN:
Category : Fuel cells
Languages : en
Pages : 38

Book Description