Carbon Dioxide Sequestration in Cementitious Construction Materials

Carbon Dioxide Sequestration in Cementitious Construction Materials PDF Author: F. Pacheco-Torgal
Publisher: Elsevier
ISBN: 0443135789
Category : Technology & Engineering
Languages : en
Pages : 428

Book Description
Carbon Dioxide Sequestration in Cementitious Construction Materials – Second Edition follows on the success of the previous edition and provides an up-to-date review on recent research developments on cementitious construction materials based on carbon dioxide storage. Along with the addition of an entire new section on bio- sequestration. Brand new chapters are included on carbonation methods such as carbon sequestration of cement pastes during pressurized CO2 curing; carbon dioxide sequestration of low-calcium fly ash via direct aqueous carbonation; increasing the efficiency of carbon dioxide sequestration through high temperature carbonation; and carbon sequestration in engineered cementitious composites. There are also several new case studies on sequestration of industrial wastes, which include carbon dioxide sequestration by direct mineralization of fly ash; the effect of direct carbonation routes of basic oxygen furnace slag on strength and hydration of blended cement paste; carbon sequestration of mine waste and utilization as a supplementary cementitious material and carbon dioxide sequestration on masonry blocks based on industrial wastes. This updated edition will be a valuable reference resource for academic researchers, materials scientists and civil engineers, and other construction professionals looking for viable routes for carbon sequestration in building materials. Promotes the importance of CO2? storage in carbonation of construction materials, especially reincorporation of CO2? during fabrication Discusses a wide range of cementitious materials with CO2? storage capabilities Features redesign of cementation mechanisms to utilize CO2? during fabrication Covers biosequestration

Carbon Dioxide Sequestration in Cementitious Construction Materials

Carbon Dioxide Sequestration in Cementitious Construction Materials PDF Author: F. Pacheco-Torgal
Publisher: Woodhead Publishing
ISBN: 0081024479
Category : Technology & Engineering
Languages : en
Pages : 476

Book Description
Carbon Dioxide Sequestration in Cementitious Construction Materials provides an updated, state-of-the-art review on the development of cementitious construction materials based on carbon dioxide storage, which will have a major eco-efficient and economic benefit for the construction industry. Key chapters include methods for the assessment of carbon dioxide absorbed by cementitious materials, air and water-based carbon dioxide storage, carbon dioxide storage modeling, carbonation mechanisms, carbon dioxide storage on recycled aggregates, calcium, sodium and magnesium- based binders, properties and the durability of carbon dioxide based concrete. Promotes the importance of CO2 storage in carbonation of these materials, especially reincorporation of CO2 during fabrication Discusses a wide range of cementitious materials with CO2 storage capabilities Features redesign of cementation mechanisms to utilize CO2 during fabrication

Carbon Dioxide Sequestration in Cementitious Construction Materials

Carbon Dioxide Sequestration in Cementitious Construction Materials PDF Author: F. Pacheco-Torgal
Publisher: Elsevier
ISBN: 0443135770
Category : Architecture
Languages : en
Pages : 426

Book Description
Carbon Dioxide Sequestration in Cementitious Construction Materials, Second Edition follows on the success of the previous edition and provides an up-to-date review on recent research developments on cementitious construction materials based on carbon dioxide storage. Brand new chapters are included on carbonation methods, such as carbon sequestration of cement pastes during pressurized CO2 curing; carbon dioxide sequestration of low-calcium fly ash via direct aqueous carbonation; increasing the efficiency of carbon dioxide sequestration through high temperature carbonation; and carbon sequestration in engineered cementitious composites. There are also several new case studies on sequestration of industrial wastes, which include carbon dioxide sequestration by direct mineralization of fly ash; the effect of direct carbonation routes of basic oxygen furnace slag on strength and hydration of blended cement paste; carbon sequestration of mine waste and utilization as a supplementary cementitious material; and carbon dioxide sequestration on masonry blocks based on industrial wastes.

Carbon Sequestration in Concrete

Carbon Sequestration in Concrete PDF Author: Wei Cheng
Publisher:
ISBN:
Category :
Languages : en
Pages : 186

Book Description
Concern for the environmental impact of increased carbon dioxide in the atmosphere has focused attention on reducing emissions of both natural and industrial carbon dioxide. This thesis explores a method for inhibiting or preventing the oxidation of carbon in plant material by encapsulating biomass in a mortar composed of portland cement, natural sand, and water. The particular biomass in question is bio-char, a pulverized charcoal produced from the pyrolysis of timber cut down due to insect infestation. While some carbon was oxidized during pyrolysis, unless encapsulated to prevent contact with oxygen, the balance of the carbon would eventually form carbon dioxide. Sequestering carbon in a portland cement binder likewise offsets carbon footprint associated with cement production (an essential ingredient in concrete) However, bio-char is a non-traditional ingredient in mortar and concrete with a heretofore unknown impact on the material performance in both the fresh and hardened states. To evaluate the impact of bio-char on fresh and hardened cementitious materials, the bio char was first characterized for particle size distribution, density, and absorption. Mortars were prepared with portland cement, natural sand, and water, with varying percentages of replacement of sand with biochar. Workability was measured via the mortar flow test, air content estimated by the Chace Air Indicator, and hardened mortar evaluated at 1 to 56 days via density, compression strength, and splitting tensile strength. For all mixtures water content was adjusted to maintain a fixed mortar flow. This thesis concentrates on the demonstration and investigation of the impact on mechanical performance including compressive and splitting tensile strength of bio-char mortar when workability of mortar mixture is controlled. The environmental benefit is estimated by means of the author's "carbon sequestration potential", and the trade-off between mechanical performance and environmental benefit demonstrated. Various models are proposed to support hypotheses for the influence of bio-char on mortar behavior. This work has shown that with the workability controlled, compressive and splitting tensile strength decreased exponentially as bio-char content increases. Carbon sequestration potential increases, however with bio-char content, such that production of cementitious materials for various applications is potentially viable for carbon neutral to carbon negative.

Proceedings of the Sustainable Concrete Materials and Structures in Construction 2020

Proceedings of the Sustainable Concrete Materials and Structures in Construction 2020 PDF Author: Sharifah Salwa Mohd Zuki
Publisher: Springer Nature
ISBN: 981162187X
Category : Building
Languages : en
Pages : 273

Book Description
This book gathers a selection of peer-reviewed papers presented at the Sustainable Concrete Materials and Structures in Construction 2020, held at Universiti Tun Hussein Onn Malaysia, Malaysia, on 24th August 2020. The contributions, prepared by international scientists and engineers, cover the latest advances in and innovative applications with the theme Towards Sustainable Green Concrete The articles in this book cater to academics, graduate students, researchers, as well as industrial practitioners working in the areas of concrete materials and building construction.

Developments and Innovation in Carbon Dioxide (CO2) Capture and Storage Technology

Developments and Innovation in Carbon Dioxide (CO2) Capture and Storage Technology PDF Author: M. Mercedes Maroto-Valer
Publisher: Elsevier
ISBN: 1845699580
Category : Technology & Engineering
Languages : en
Pages : 540

Book Description
Carbon dioxide (CO2) capture and storage (CCS) is the one advanced technology that conventional power generation cannot do without. CCS technology reduces the carbon footprint of power plants by capturing, and storing the CO2 emissions from burning fossil-fuels and biomass. This volume provides a comprehensive reference on the state of the art research, development and demonstration of carbon storage and utilisation, covering all the storage options and their environmental impacts. It critically reviews geological, terrestrial and ocean sequestration, including enhanced oil and gas recovery, as well as other advanced concepts such as industrial utilisation, mineral carbonation, biofixation and photocatalytic reduction. Foreword written by Lord Oxburgh, Climate Science Peer Comprehensively examines the different methods of storage of carbon dioxide (CO2) and the various concepts for utilisation Reviews geological sequestration of CO2, including coverage of reservoir sealing and monitoring and modelling techniques used to verify geological sequestration of CO2

Industrial and Process Furnaces

Industrial and Process Furnaces PDF Author: Barrie Jenkins
Publisher: Butterworth-Heinemann
ISBN: 0080993788
Category : Technology & Engineering
Languages : en
Pages : 677

Book Description
Furnaces sit at the core of all branches of manufacture and industry, so it is vital that these are designed and operated safely and effi-ciently. This reference provides all of the furnace theory needed to ensure that this can be executed successfully on an industrial scale. Industrial and Process Furnaces: Principles, 2nd Edition provides comprehensive coverage of all aspects of furnace operation and design, including topics essential for process engineers and operators to better understand furnaces. This includes: the combustion process and its control, furnace fuels, efficiency, burner design and selection, aerodynamics, heat release profiles, furnace atmosphere, safety and emissions. These elements and more are brought together to illustrate how to achieve optimum design and operation, with real-world case studies to showcase their application. Up-to-date and comprehensive reference encompassing not only best practice of operation but the essential elements of furnace theory and design, essential to anyone working with furnaces, ovens and combustion-based systems. More case studies, more worked examples. New material in this second edition includes further application of Computational Fluid Dynamics (CFD), with additional content on flames and burners, costs, efficiencies and future trends.

Drawdown

Drawdown PDF Author: Paul Hawken
Publisher: Penguin
ISBN: 1524704652
Category : Science
Languages : en
Pages : 258

Book Description
• New York Times bestseller • The 100 most substantive solutions to reverse global warming, based on meticulous research by leading scientists and policymakers around the world “At this point in time, the Drawdown book is exactly what is needed; a credible, conservative solution-by-solution narrative that we can do it. Reading it is an effective inoculation against the widespread perception of doom that humanity cannot and will not solve the climate crisis. Reported by-effects include increased determination and a sense of grounded hope.” —Per Espen Stoknes, Author, What We Think About When We Try Not To Think About Global Warming “There’s been no real way for ordinary people to get an understanding of what they can do and what impact it can have. There remains no single, comprehensive, reliable compendium of carbon-reduction solutions across sectors. At least until now. . . . The public is hungry for this kind of practical wisdom.” —David Roberts, Vox “This is the ideal environmental sciences textbook—only it is too interesting and inspiring to be called a textbook.” —Peter Kareiva, Director of the Institute of the Environment and Sustainability, UCLA In the face of widespread fear and apathy, an international coalition of researchers, professionals, and scientists have come together to offer a set of realistic and bold solutions to climate change. One hundred techniques and practices are described here—some are well known; some you may have never heard of. They range from clean energy to educating girls in lower-income countries to land use practices that pull carbon out of the air. The solutions exist, are economically viable, and communities throughout the world are currently enacting them with skill and determination. If deployed collectively on a global scale over the next thirty years, they represent a credible path forward, not just to slow the earth’s warming but to reach drawdown, that point in time when greenhouse gases in the atmosphere peak and begin to decline. These measures promise cascading benefits to human health, security, prosperity, and well-being—giving us every reason to see this planetary crisis as an opportunity to create a just and livable world.

Carbon Capture

Carbon Capture PDF Author: Ronald E. Hester
Publisher: Royal Society of Chemistry
ISBN: 1847559174
Category : Science
Languages : en
Pages : 325

Book Description
Reports on methods of capturing and storing CO2 from major sources to reduce the levels emitted to the atmosphere by human activities.

Negative Emissions Technologies and Reliable Sequestration

Negative Emissions Technologies and Reliable Sequestration PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309484529
Category : Science
Languages : en
Pages : 511

Book Description
To achieve goals for climate and economic growth, "negative emissions technologies" (NETs) that remove and sequester carbon dioxide from the air will need to play a significant role in mitigating climate change. Unlike carbon capture and storage technologies that remove carbon dioxide emissions directly from large point sources such as coal power plants, NETs remove carbon dioxide directly from the atmosphere or enhance natural carbon sinks. Storing the carbon dioxide from NETs has the same impact on the atmosphere and climate as simultaneously preventing an equal amount of carbon dioxide from being emitted. Recent analyses found that deploying NETs may be less expensive and less disruptive than reducing some emissions, such as a substantial portion of agricultural and land-use emissions and some transportation emissions. In 2015, the National Academies published Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration, which described and initially assessed NETs and sequestration technologies. This report acknowledged the relative paucity of research on NETs and recommended development of a research agenda that covers all aspects of NETs from fundamental science to full-scale deployment. To address this need, Negative Emissions Technologies and Reliable Sequestration: A Research Agenda assesses the benefits, risks, and "sustainable scale potential" for NETs and sequestration. This report also defines the essential components of a research and development program, including its estimated costs and potential impact.