Cantor Minimal Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Cantor Minimal Systems PDF full book. Access full book title Cantor Minimal Systems by Ian F. Putnam. Download full books in PDF and EPUB format.

Cantor Minimal Systems

Cantor Minimal Systems PDF Author: Ian F. Putnam
Publisher: American Mathematical Soc.
ISBN: 1470441152
Category : Mathematics
Languages : en
Pages : 167

Book Description
Within the subject of topological dynamics, there has been considerable recent interest in systems where the underlying topological space is a Cantor set. Such systems have an inherently combinatorial nature, and seminal ideas of Anatoly Vershik allowed for a combinatorial model, called the Bratteli-Vershik model, for such systems with no non-trivial closed invariant subsets. This model led to a construction of an ordered abelian group which is an algebraic invariant of the system providing a complete classification of such systems up to orbit equivalence. The goal of this book is to give a statement of this classification result and to develop ideas and techniques leading to it. Rather than being a comprehensive treatment of the area, this book is aimed at students and researchers trying to learn about some surprising connections between dynamics and algebra. The only background material needed is a basic course in group theory and a basic course in general topology.

Cantor Minimal Systems

Cantor Minimal Systems PDF Author: Ian F. Putnam
Publisher: American Mathematical Soc.
ISBN: 1470441152
Category : Mathematics
Languages : en
Pages : 167

Book Description
Within the subject of topological dynamics, there has been considerable recent interest in systems where the underlying topological space is a Cantor set. Such systems have an inherently combinatorial nature, and seminal ideas of Anatoly Vershik allowed for a combinatorial model, called the Bratteli-Vershik model, for such systems with no non-trivial closed invariant subsets. This model led to a construction of an ordered abelian group which is an algebraic invariant of the system providing a complete classification of such systems up to orbit equivalence. The goal of this book is to give a statement of this classification result and to develop ideas and techniques leading to it. Rather than being a comprehensive treatment of the area, this book is aimed at students and researchers trying to learn about some surprising connections between dynamics and algebra. The only background material needed is a basic course in group theory and a basic course in general topology.

Handbook of Dynamical Systems

Handbook of Dynamical Systems PDF Author: A. Katok
Publisher: Elsevier
ISBN: 0080478220
Category : Mathematics
Languages : en
Pages : 1235

Book Description
This second half of Volume 1 of this Handbook follows Volume 1A, which was published in 2002. The contents of these two tightly integrated parts taken together come close to a realization of the program formulated in the introductory survey "Principal Structures of Volume 1A.The present volume contains surveys on subjects in four areas of dynamical systems: Hyperbolic dynamics, parabolic dynamics, ergodic theory and infinite-dimensional dynamical systems (partial differential equations).. Written by experts in the field.. The coverage of ergodic theory in these two parts of Volume 1 is considerably more broad and thorough than that provided in other existing sources. . The final cluster of chapters discusses partial differential equations from the point of view of dynamical systems.

Ergodic Theory

Ergodic Theory PDF Author: Cesar E. Silva
Publisher: Springer Nature
ISBN: 1071623885
Category : Mathematics
Languages : en
Pages : 707

Book Description
This volume in the Encyclopedia of Complexity and Systems Science, Second Edition, covers recent developments in classical areas of ergodic theory, including the asymptotic properties of measurable dynamical systems, spectral theory, entropy, ergodic theorems, joinings, isomorphism theory, recurrence, nonsingular systems. It enlightens connections of ergodic theory with symbolic dynamics, topological dynamics, smooth dynamics, combinatorics, number theory, pressure and equilibrium states, fractal geometry, chaos. In addition, the new edition includes dynamical systems of probabilistic origin, ergodic aspects of Sarnak's conjecture, translation flows on translation surfaces, complexity and classification of measurable systems, operator approach to asymptotic properties, interplay with operator algebras

Dynamics and Numbers

Dynamics and Numbers PDF Author: Sergiǐ Kolyada:
Publisher: American Mathematical Soc.
ISBN: 1470420201
Category : Mathematics
Languages : en
Pages : 330

Book Description
This volume contains a collection of survey and research articles from the special program and international conference on Dynamics and Numbers held at the Max-Planck Institute for Mathematics in Bonn, Germany in 2014. The papers reflect the great diversity and depth of the interaction between number theory and dynamical systems and geometry in particular. Topics covered in this volume include symbolic dynamics, Bratelli diagrams, geometry of laminations, entropy, Nielsen theory, recurrence, topology of the moduli space of interval maps, and specification properties.

Dimension Groups and Dynamical Systems

Dimension Groups and Dynamical Systems PDF Author: Fabien Durand
Publisher: Cambridge University Press
ISBN: 1108986099
Category : Mathematics
Languages : en
Pages : 594

Book Description
This book is the first self-contained exposition of the fascinating link between dynamical systems and dimension groups. The authors explore the rich interplay between topological properties of dynamical systems and the algebraic structures associated with them, with an emphasis on symbolic systems, particularly substitution systems. It is recommended for anybody with an interest in topological and symbolic dynamics, automata theory or combinatorics on words. Intended to serve as an introduction for graduate students and other newcomers to the field as well as a reference for established researchers, the book includes a thorough account of the background notions as well as detailed exposition – with full proofs – of the major results of the subject. A wealth of examples and exercises, with solutions, serve to build intuition, while the many open problems collected at the end provide jumping-off points for future research.

Topological and Ergodic Theory of Symbolic Dynamics

Topological and Ergodic Theory of Symbolic Dynamics PDF Author: Henk Bruin
Publisher: American Mathematical Society
ISBN: 1470469847
Category : Mathematics
Languages : en
Pages : 481

Book Description
Symbolic dynamics is essential in the study of dynamical systems of various types and is connected to many other fields such as stochastic processes, ergodic theory, representation of numbers, information and coding, etc. This graduate text introduces symbolic dynamics from a perspective of topological dynamical systems and presents a vast variety of important examples. After introducing symbolic and topological dynamics, the core of the book consists of discussions of various subshifts of positive entropy, of zero entropy, other non-shift minimal action on the Cantor set, and a study of the ergodic properties of these systems. The author presents recent developments such as spacing shifts, square-free shifts, density shifts, $mathcal{B}$-free shifts, Bratteli-Vershik systems, enumeration scales, amorphic complexity, and a modern and complete treatment of kneading theory. Later, he provides an overview of automata and linguistic complexity (Chomsky's hierarchy). The necessary background for the book varies, but for most of it a solid knowledge of real analysis and linear algebra and first courses in probability and measure theory, metric spaces, number theory, topology, and set theory suffice. Most of the exercises have solutions in the back of the book.

Recent Progress in General Topology II

Recent Progress in General Topology II PDF Author: M. Husek
Publisher: Elsevier
ISBN: 0080929958
Category : Mathematics
Languages : en
Pages : 651

Book Description
The book presents surveys describing recent developments in most of the primary subfields ofGeneral Topology and its applications to Algebra and Analysis during the last decade. It follows freelythe previous edition (North Holland, 1992), Open Problems in Topology (North Holland, 1990) and Handbook of Set-Theoretic Topology (North Holland, 1984). The book was prepared inconnection with the Prague Topological Symposium, held in 2001. During the last 10 years the focusin General Topology changed and therefore the selection of topics differs slightly from thosechosen in 1992. The following areas experienced significant developments: Topological Groups, Function Spaces, Dimension Theory, Hyperspaces, Selections, Geometric Topology (includingInfinite-Dimensional Topology and the Geometry of Banach Spaces). Of course, not every important topic could be included in this book. Except surveys, the book contains several historical essays written by such eminent topologists as:R.D. Anderson, W.W. Comfort, M. Henriksen, S. Mardeŝić, J. Nagata, M.E. Rudin, J.M. Smirnov (several reminiscences of L. Vietoris are added). In addition to extensive author and subject indexes, a list of all problems and questions posed in this book are added. List of all authors of surveys: A. Arhangel'skii, J. Baker and K. Kunen, H. Bennett and D. Lutzer, J. Dijkstra and J. van Mill, A. Dow, E. Glasner, G. Godefroy, G. Gruenhage, N. Hindman and D. Strauss, L. Hola and J. Pelant, K. Kawamura, H.-P. Kuenzi, W. Marciszewski, K. Martin and M. Mislove and M. Reed, R. Pol and H. Torunczyk, D. Repovs and P. Semenov, D. Shakhmatov, S. Solecki, M. Tkachenko.

Combinatorics, Automata and Number Theory

Combinatorics, Automata and Number Theory PDF Author: Valérie Berthé
Publisher: Cambridge University Press
ISBN: 0521515971
Category : Mathematics
Languages : en
Pages : 637

Book Description
This series is devoted to significant topics or themes that have wide application in mathematics or mathematical science and for which a detailed development of the abstract theory is less important than a thorough and concrete exploration of the implications and applications. Books in the Encyclopedia of Mathematics and its Applications cover their subjects comprehensively. Less important results may be summarised as exercises at the ends of chapters, For technicalities, readers can be referred to the bibliography, which is expected to be comprehensive. As a result, volumes are encyclopedic references or manageable guides to major subjects.

2019-20 MATRIX Annals

2019-20 MATRIX Annals PDF Author: Jan de Gier
Publisher: Springer Nature
ISBN: 3030624978
Category : Mathematics
Languages : en
Pages : 798

Book Description
MATRIX is Australia’s international and residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each 1-4 weeks in duration. This book is a scientific record of the ten programs held at MATRIX in 2019 and the two programs held in January 2020: · Topology of Manifolds: Interactions Between High and Low Dimensions · Australian-German Workshop on Differential Geometry in the Large · Aperiodic Order meets Number Theory · Ergodic Theory, Diophantine Approximation and Related Topics · Influencing Public Health Policy with Data-informed Mathematical Models of Infectious Diseases · International Workshop on Spatial Statistics · Mathematics of Physiological Rhythms · Conservation Laws, Interfaces and Mixing · Structural Graph Theory Downunder · Tropical Geometry and Mirror Symmetry · Early Career Researchers Workshop on Geometric Analysis and PDEs · Harmonic Analysis and Dispersive PDEs: Problems and Progress The articles are grouped into peer-reviewed contributions and other contributions. The peer-reviewed articles present original results or reviews on a topic related to the MATRIX program; the remaining contributions are predominantly lecture notes or short articles based on talks or activities at MATRIX.

Operator Algebras

Operator Algebras PDF Author: Ola Bratteli
Publisher: Springer Science & Business Media
ISBN: 3540341978
Category : Mathematics
Languages : en
Pages : 280

Book Description
The theme of the first Abel Symposium was operator algebras in a wide sense. In the last 40 years operator algebras have developed from a rather special discipline within functional analysis to become a central field in mathematics often described as "non-commutative geometry". It has branched out in several sub-disciplines and made contact with other subjects. The contributions to this volume give a state-of-the-art account of some of these sub-disciplines and the variety of topics reflect to some extent how the subject has developed. This is the first volume in a prestigious new book series linked to the Abel prize.