Author: Ron Larson
Publisher: Houghton Mifflin
ISBN: 9780618149162
Category : Calculus
Languages : en
Pages : 0
Book Description
One CD-Rom in pocket.
Calculus of a Single Variable
Author: Ron Larson
Publisher: Houghton Mifflin
ISBN: 9780618149162
Category : Calculus
Languages : en
Pages : 0
Book Description
One CD-Rom in pocket.
Publisher: Houghton Mifflin
ISBN: 9780618149162
Category : Calculus
Languages : en
Pages : 0
Book Description
One CD-Rom in pocket.
Multivariable Calculus with Applications
Author: Peter D. Lax
Publisher: Springer
ISBN: 3319740733
Category : Mathematics
Languages : en
Pages : 488
Book Description
This text in multivariable calculus fosters comprehension through meaningful explanations. Written with students in mathematics, the physical sciences, and engineering in mind, it extends concepts from single variable calculus such as derivative, integral, and important theorems to partial derivatives, multiple integrals, Stokes’ and divergence theorems. Students with a background in single variable calculus are guided through a variety of problem solving techniques and practice problems. Examples from the physical sciences are utilized to highlight the essential relationship between calculus and modern science. The symbiotic relationship between science and mathematics is shown by deriving and discussing several conservation laws, and vector calculus is utilized to describe a number of physical theories via partial differential equations. Students will learn that mathematics is the language that enables scientific ideas to be precisely formulated and that science is a source for the development of mathematics.
Publisher: Springer
ISBN: 3319740733
Category : Mathematics
Languages : en
Pages : 488
Book Description
This text in multivariable calculus fosters comprehension through meaningful explanations. Written with students in mathematics, the physical sciences, and engineering in mind, it extends concepts from single variable calculus such as derivative, integral, and important theorems to partial derivatives, multiple integrals, Stokes’ and divergence theorems. Students with a background in single variable calculus are guided through a variety of problem solving techniques and practice problems. Examples from the physical sciences are utilized to highlight the essential relationship between calculus and modern science. The symbiotic relationship between science and mathematics is shown by deriving and discussing several conservation laws, and vector calculus is utilized to describe a number of physical theories via partial differential equations. Students will learn that mathematics is the language that enables scientific ideas to be precisely formulated and that science is a source for the development of mathematics.
Calculus: Early Transcendentals
Author: James Stewart
Publisher: Cengage Learning
ISBN: 9781337613927
Category : Mathematics
Languages : en
Pages : 0
Book Description
James Stewart's Calculus series is the top-seller in the world because of its problem-solving focus, mathematical precision and accuracy, and outstanding examples and problem sets. Selected and mentored by Stewart, Daniel Clegg and Saleem Watson continue his legacy of providing students with the strongest foundation for a STEM future. Their careful refinements retain Stewart’s clarity of exposition and make the 9th Edition even more useful as a teaching tool for instructors and as a learning tool for students. Showing that Calculus is both practical and beautiful, the Stewart approach enhances understanding and builds confidence for millions of students worldwide. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
Publisher: Cengage Learning
ISBN: 9781337613927
Category : Mathematics
Languages : en
Pages : 0
Book Description
James Stewart's Calculus series is the top-seller in the world because of its problem-solving focus, mathematical precision and accuracy, and outstanding examples and problem sets. Selected and mentored by Stewart, Daniel Clegg and Saleem Watson continue his legacy of providing students with the strongest foundation for a STEM future. Their careful refinements retain Stewart’s clarity of exposition and make the 9th Edition even more useful as a teaching tool for instructors and as a learning tool for students. Showing that Calculus is both practical and beautiful, the Stewart approach enhances understanding and builds confidence for millions of students worldwide. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
An Introduction to Hybrid Dynamical Systems
Author: Arjan J. van der Schaft
Publisher: Springer
ISBN: 1846285429
Category : Technology & Engineering
Languages : en
Pages : 189
Book Description
This book is about dynamical systems that are "hybrid" in the sense that they contain both continuous and discrete state variables. Recently there has been increased research interest in the study of the interaction between discrete and continuous dynamics. The present volume provides a first attempt in book form to bring together concepts and methods dealing with hybrid systems from various areas, and to look at these from a unified perspective. The authors have chosen a mode of exposition that is largely based on illustrative examples rather than on the abstract theorem-proof format because the systematic study of hybrid systems is still in its infancy. The examples are taken from many different application areas, ranging from power converters to communication protocols and from chaos to mathematical finance. Subjects covered include the following: definition of hybrid systems; description formats; existence and uniqueness of solutions; special subclasses (variable-structure systems, complementarity systems); reachability and verification; stability and stabilizability; control design methods. The book will be of interest to scientists from a wide range of disciplines including: computer science, control theory, dynamical system theory, systems modeling and simulation, and operations research.
Publisher: Springer
ISBN: 1846285429
Category : Technology & Engineering
Languages : en
Pages : 189
Book Description
This book is about dynamical systems that are "hybrid" in the sense that they contain both continuous and discrete state variables. Recently there has been increased research interest in the study of the interaction between discrete and continuous dynamics. The present volume provides a first attempt in book form to bring together concepts and methods dealing with hybrid systems from various areas, and to look at these from a unified perspective. The authors have chosen a mode of exposition that is largely based on illustrative examples rather than on the abstract theorem-proof format because the systematic study of hybrid systems is still in its infancy. The examples are taken from many different application areas, ranging from power converters to communication protocols and from chaos to mathematical finance. Subjects covered include the following: definition of hybrid systems; description formats; existence and uniqueness of solutions; special subclasses (variable-structure systems, complementarity systems); reachability and verification; stability and stabilizability; control design methods. The book will be of interest to scientists from a wide range of disciplines including: computer science, control theory, dynamical system theory, systems modeling and simulation, and operations research.
Calculus of Variations and Optimal Control Theory
Author: Daniel Liberzon
Publisher: Princeton University Press
ISBN: 0691151873
Category : Mathematics
Languages : en
Pages : 255
Book Description
This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the historical development of the subject Solutions manual (available only to teachers) Leading universities that have adopted this book include: University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems Georgia Institute of Technology ECE 6553: Optimal Control and Optimization University of Pennsylvania ESE 680: Optimal Control Theory University of Notre Dame EE 60565: Optimal Control
Publisher: Princeton University Press
ISBN: 0691151873
Category : Mathematics
Languages : en
Pages : 255
Book Description
This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the historical development of the subject Solutions manual (available only to teachers) Leading universities that have adopted this book include: University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems Georgia Institute of Technology ECE 6553: Optimal Control and Optimization University of Pennsylvania ESE 680: Optimal Control Theory University of Notre Dame EE 60565: Optimal Control
Calculus for Computer Graphics
Author: John Vince
Publisher: Springer
ISBN: 3030113760
Category : Computers
Languages : en
Pages : 306
Book Description
Students studying different branches of computer graphics have to be familiar with geometry, matrices, vectors, rotation transforms, quaternions, curves and surfaces and as computer graphics software becomes increasingly sophisticated, calculus is also being used to resolve its associated problems. In this 2nd edition, the author extends the scope of the original book to include applications of calculus in the areas of arc-length parameterisation of curves, geometric continuity, tangent and normal vectors, and curvature. The author draws upon his experience in teaching mathematics to undergraduates to make calculus appear no more challenging than any other branch of mathematics. He introduces the subject by examining how functions depend upon their independent variables, and then derives the appropriate mathematical underpinning and definitions. This gives rise to a function’s derivative and its antiderivative, or integral. Using the idea of limits, the reader is introduced to derivatives and integrals of many common functions. Other chapters address higher-order derivatives, partial derivatives, Jacobians, vector-based functions, single, double and triple integrals, with numerous worked examples, and over a hundred and seventy colour illustrations. This book complements the author’s other books on mathematics for computer graphics, and assumes that the reader is familiar with everyday algebra, trigonometry, vectors and determinants. After studying this book, the reader should understand calculus and its application within the world of computer graphics, games and animation.
Publisher: Springer
ISBN: 3030113760
Category : Computers
Languages : en
Pages : 306
Book Description
Students studying different branches of computer graphics have to be familiar with geometry, matrices, vectors, rotation transforms, quaternions, curves and surfaces and as computer graphics software becomes increasingly sophisticated, calculus is also being used to resolve its associated problems. In this 2nd edition, the author extends the scope of the original book to include applications of calculus in the areas of arc-length parameterisation of curves, geometric continuity, tangent and normal vectors, and curvature. The author draws upon his experience in teaching mathematics to undergraduates to make calculus appear no more challenging than any other branch of mathematics. He introduces the subject by examining how functions depend upon their independent variables, and then derives the appropriate mathematical underpinning and definitions. This gives rise to a function’s derivative and its antiderivative, or integral. Using the idea of limits, the reader is introduced to derivatives and integrals of many common functions. Other chapters address higher-order derivatives, partial derivatives, Jacobians, vector-based functions, single, double and triple integrals, with numerous worked examples, and over a hundred and seventy colour illustrations. This book complements the author’s other books on mathematics for computer graphics, and assumes that the reader is familiar with everyday algebra, trigonometry, vectors and determinants. After studying this book, the reader should understand calculus and its application within the world of computer graphics, games and animation.
Calculus
Author: James Stewart
Publisher:
ISBN: 9781305272378
Category : Calculus
Languages : en
Pages : 0
Book Description
Success in your calculus course starts here! James Stewart's CALCULUS: EARLY TRANSCENDENTALS, INTERNATIONAL METRIC EDITION texts are world-wide best-sellers for a reason: they are clear, accurate, and filled with relevant, real-world examples. With CALCULUS: EARLY TRANSCENDENTALS, 8E, INTERNATIONAL METRIC EDITION, , Stewart conveys not only the utility of calculus to help you develop technical competence, but also gives you an appreciation for the intrinsic beauty of the subject. His patient examples and built-in learning aids will help you build your mathematical confidence and achieve your goals in the course.
Publisher:
ISBN: 9781305272378
Category : Calculus
Languages : en
Pages : 0
Book Description
Success in your calculus course starts here! James Stewart's CALCULUS: EARLY TRANSCENDENTALS, INTERNATIONAL METRIC EDITION texts are world-wide best-sellers for a reason: they are clear, accurate, and filled with relevant, real-world examples. With CALCULUS: EARLY TRANSCENDENTALS, 8E, INTERNATIONAL METRIC EDITION, , Stewart conveys not only the utility of calculus to help you develop technical competence, but also gives you an appreciation for the intrinsic beauty of the subject. His patient examples and built-in learning aids will help you build your mathematical confidence and achieve your goals in the course.
Book of Proof
Author: Richard H. Hammack
Publisher:
ISBN: 9780989472111
Category : Mathematics
Languages : en
Pages : 314
Book Description
This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.
Publisher:
ISBN: 9780989472111
Category : Mathematics
Languages : en
Pages : 314
Book Description
This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.
Salas and Hille's Calculus One Variable
Author: Saturnino L. Salas
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 888
Book Description
A classic Wiley offering considered to be one of the most outstanding calculus textbooks. It has a terse and elegant mathematics presentation which appeals to those who are interested in leanness in exposition. The focus is on three basic concepts—limit, derivative and integral. Student-friendly, the book's mathematical statements are careful and precise and all important theorems are proved. This expanded edition incorporates modern technology and current trends without sacrificing its acknowledged strengths. Includes many examples and exercises.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 888
Book Description
A classic Wiley offering considered to be one of the most outstanding calculus textbooks. It has a terse and elegant mathematics presentation which appeals to those who are interested in leanness in exposition. The focus is on three basic concepts—limit, derivative and integral. Student-friendly, the book's mathematical statements are careful and precise and all important theorems are proved. This expanded edition incorporates modern technology and current trends without sacrificing its acknowledged strengths. Includes many examples and exercises.
Functional Analysis, Calculus of Variations and Optimal Control
Author: Francis Clarke
Publisher: Springer Science & Business Media
ISBN: 1447148207
Category : Mathematics
Languages : en
Pages : 589
Book Description
Functional analysis owes much of its early impetus to problems that arise in the calculus of variations. In turn, the methods developed there have been applied to optimal control, an area that also requires new tools, such as nonsmooth analysis. This self-contained textbook gives a complete course on all these topics. It is written by a leading specialist who is also a noted expositor. This book provides a thorough introduction to functional analysis and includes many novel elements as well as the standard topics. A short course on nonsmooth analysis and geometry completes the first half of the book whilst the second half concerns the calculus of variations and optimal control. The author provides a comprehensive course on these subjects, from their inception through to the present. A notable feature is the inclusion of recent, unifying developments on regularity, multiplier rules, and the Pontryagin maximum principle, which appear here for the first time in a textbook. Other major themes include existence and Hamilton-Jacobi methods. The many substantial examples, and the more than three hundred exercises, treat such topics as viscosity solutions, nonsmooth Lagrangians, the logarithmic Sobolev inequality, periodic trajectories, and systems theory. They also touch lightly upon several fields of application: mechanics, economics, resources, finance, control engineering. Functional Analysis, Calculus of Variations and Optimal Control is intended to support several different courses at the first-year or second-year graduate level, on functional analysis, on the calculus of variations and optimal control, or on some combination. For this reason, it has been organized with customization in mind. The text also has considerable value as a reference. Besides its advanced results in the calculus of variations and optimal control, its polished presentation of certain other topics (for example convex analysis, measurable selections, metric regularity, and nonsmooth analysis) will be appreciated by researchers in these and related fields.
Publisher: Springer Science & Business Media
ISBN: 1447148207
Category : Mathematics
Languages : en
Pages : 589
Book Description
Functional analysis owes much of its early impetus to problems that arise in the calculus of variations. In turn, the methods developed there have been applied to optimal control, an area that also requires new tools, such as nonsmooth analysis. This self-contained textbook gives a complete course on all these topics. It is written by a leading specialist who is also a noted expositor. This book provides a thorough introduction to functional analysis and includes many novel elements as well as the standard topics. A short course on nonsmooth analysis and geometry completes the first half of the book whilst the second half concerns the calculus of variations and optimal control. The author provides a comprehensive course on these subjects, from their inception through to the present. A notable feature is the inclusion of recent, unifying developments on regularity, multiplier rules, and the Pontryagin maximum principle, which appear here for the first time in a textbook. Other major themes include existence and Hamilton-Jacobi methods. The many substantial examples, and the more than three hundred exercises, treat such topics as viscosity solutions, nonsmooth Lagrangians, the logarithmic Sobolev inequality, periodic trajectories, and systems theory. They also touch lightly upon several fields of application: mechanics, economics, resources, finance, control engineering. Functional Analysis, Calculus of Variations and Optimal Control is intended to support several different courses at the first-year or second-year graduate level, on functional analysis, on the calculus of variations and optimal control, or on some combination. For this reason, it has been organized with customization in mind. The text also has considerable value as a reference. Besides its advanced results in the calculus of variations and optimal control, its polished presentation of certain other topics (for example convex analysis, measurable selections, metric regularity, and nonsmooth analysis) will be appreciated by researchers in these and related fields.