Author: Kent Harris
Publisher: John Wiley & Sons, Incorporated
ISBN:
Category : Computers
Languages : en
Pages : 360
Book Description
This substantially illustrated manual describes how to use Maple as an investigative tool to explore calculus concepts numerically, graphically, symbolically and verbally. Every chapter begins with Maple commands employed in the chapter, an introduction to the mathematical concepts being covered, worked examples in Maple worksheet format, followed by thought-provoking exercises and extensive discovery projects to encourage readers to investigate ideas on their own.
Exploring Discrete Mathematics with Maple
Author: Kenneth H. Rosen
Publisher: McGraw-Hill Science, Engineering & Mathematics
ISBN: 9780070541283
Category : Computer science
Languages : en
Pages : 0
Book Description
This is the first supplement in discrete mathematics to concentrate on the computational aspects of the computer algebra system Maple. Detailed instructions for the use of Maple are included in an introductory chapter and in each subsequent chapter. Each chapter includes discussion of selected Computational and Exploration exercises in the corresponding chapter of Ken Rosen's text Discrete Math and It's Applications, Third Edition. New exercises and projects are included in each chapter to encourage further exploration of discrete mathematics using Maple. All of the Maple code in this supplement is available online via the Waterloo Maple Web site, in addition to new Maple routines that have been created which extend the current capabilities of Maple.
Publisher: McGraw-Hill Science, Engineering & Mathematics
ISBN: 9780070541283
Category : Computer science
Languages : en
Pages : 0
Book Description
This is the first supplement in discrete mathematics to concentrate on the computational aspects of the computer algebra system Maple. Detailed instructions for the use of Maple are included in an introductory chapter and in each subsequent chapter. Each chapter includes discussion of selected Computational and Exploration exercises in the corresponding chapter of Ken Rosen's text Discrete Math and It's Applications, Third Edition. New exercises and projects are included in each chapter to encourage further exploration of discrete mathematics using Maple. All of the Maple code in this supplement is available online via the Waterloo Maple Web site, in addition to new Maple routines that have been created which extend the current capabilities of Maple.
Discovering Mathematics with Maple
Author: R.J. Stroeker
Publisher: Birkhäuser
ISBN: 3034887264
Category : Computers
Languages : en
Pages : 240
Book Description
This unusual introduction to Maple shows readers how Maple or any other computer algebra system fits naturally into a mathematically oriented work environment. Designed for mathematicians, engineers, econometricians, and other scientists, this book shows how computer algebra can enhance their theoretical work. A CD-ROM contains all the Maple worksheets presented in the book.
Publisher: Birkhäuser
ISBN: 3034887264
Category : Computers
Languages : en
Pages : 240
Book Description
This unusual introduction to Maple shows readers how Maple or any other computer algebra system fits naturally into a mathematically oriented work environment. Designed for mathematicians, engineers, econometricians, and other scientists, this book shows how computer algebra can enhance their theoretical work. A CD-ROM contains all the Maple worksheets presented in the book.
Advanced Mathematical Methods with Maple
Author: Derek Richards
Publisher: Cambridge University Press
ISBN: 9780521779814
Category : Computers
Languages : en
Pages : 884
Book Description
A user-friendly student guide to computer-assisted algebra with mathematical software packages such as Maple.
Publisher: Cambridge University Press
ISBN: 9780521779814
Category : Computers
Languages : en
Pages : 884
Book Description
A user-friendly student guide to computer-assisted algebra with mathematical software packages such as Maple.
Advanced Engineering Mathematics
Author: Robert J. Lopez
Publisher: Addison Wesley
ISBN: 9780201380736
Category : Mathematics
Languages : en
Pages : 1158
Book Description
This innovative text was written for the one or two-semester, sophomore/junior level advanced maths course for engineers. It was built from the ground up using a Computer Algebra System, offering the student opportunities to visualize and experience the maths at every turn. The text has been designed to accommodate a variety of teaching styles, and varying levels on technology integration. It has a logical arrangement with many short self-contained sections, and many real-world applications of interest to engineering students. Chapter Introductions and Chapter Summaries help to make the material more accessible, and Chapter Review Exercises provides constant checks along the way. *A CD-ROM is included in the back of every book, which contains Maple worksheets. The Maple worksheets are fully integrated with the books content, and provide a great resource for students when working on exercise sections. The CD-ROM allows the instructor and the student to take full advantage of what the text has to offer. *Logical arrangement with many short self-contained sections. *Exercises are divided into two sections: those designed to be computed by hand (A exercises), and those to be computed w
Publisher: Addison Wesley
ISBN: 9780201380736
Category : Mathematics
Languages : en
Pages : 1158
Book Description
This innovative text was written for the one or two-semester, sophomore/junior level advanced maths course for engineers. It was built from the ground up using a Computer Algebra System, offering the student opportunities to visualize and experience the maths at every turn. The text has been designed to accommodate a variety of teaching styles, and varying levels on technology integration. It has a logical arrangement with many short self-contained sections, and many real-world applications of interest to engineering students. Chapter Introductions and Chapter Summaries help to make the material more accessible, and Chapter Review Exercises provides constant checks along the way. *A CD-ROM is included in the back of every book, which contains Maple worksheets. The Maple worksheets are fully integrated with the books content, and provide a great resource for students when working on exercise sections. The CD-ROM allows the instructor and the student to take full advantage of what the text has to offer. *Logical arrangement with many short self-contained sections. *Exercises are divided into two sections: those designed to be computed by hand (A exercises), and those to be computed w
Introduction To Mathematics With Maple
Author: Peter Adams
Publisher: World Scientific Publishing Company
ISBN: 981310211X
Category : Mathematics
Languages : en
Pages : 544
Book Description
The principal aim of this book is to introduce university level mathematics — both algebra and calculus. The text is suitable for first and second year students. It treats the material in depth, and thus can also be of interest to beginning graduate students.New concepts are motivated before being introduced through rigorous definitions. All theorems are proved and great care is taken over the logical structure of the material presented. To facilitate understanding, a large number of diagrams are included. Most of the material is presented in the traditional way, but an innovative approach is taken with emphasis on the use of Maple and in presenting a modern theory of integration. To help readers with their own use of this software, a list of Maple commands employed in the book is provided. The book advocates the use of computers in mathematics in general, and in pure mathematics in particular. It makes the point that results need not be correct just because they come from the computer. A careful and critical approach to using computer algebra systems persists throughout the text.
Publisher: World Scientific Publishing Company
ISBN: 981310211X
Category : Mathematics
Languages : en
Pages : 544
Book Description
The principal aim of this book is to introduce university level mathematics — both algebra and calculus. The text is suitable for first and second year students. It treats the material in depth, and thus can also be of interest to beginning graduate students.New concepts are motivated before being introduced through rigorous definitions. All theorems are proved and great care is taken over the logical structure of the material presented. To facilitate understanding, a large number of diagrams are included. Most of the material is presented in the traditional way, but an innovative approach is taken with emphasis on the use of Maple and in presenting a modern theory of integration. To help readers with their own use of this software, a list of Maple commands employed in the book is provided. The book advocates the use of computers in mathematics in general, and in pure mathematics in particular. It makes the point that results need not be correct just because they come from the computer. A careful and critical approach to using computer algebra systems persists throughout the text.
Multivariable and Vector Calculus
Author: Sarhan M. Musa
Publisher: Mercury Learning and Information
ISBN: 1683929179
Category : Mathematics
Languages : en
Pages : 491
Book Description
This book is designed primarily for undergraduates in mathematics, engineering, and the physical sciences. Rather than concentrating on technical skills, it focuses on a deeper understanding of the subject by providing many unusual and challenging examples. The basic topics of vector geometry, differentiation and integration in several variables are explored. Furthermore, it can be used to impower the mathematical knowledge for Artificial Intelligence (AI) concepts. It also provides numerous computer illustrations and tutorials using MATLAB® and Maple®, that bridge the gap between analysis and computation. Partial solutions and instructor ancillaries available for use as a textbook. FEATURES Includes numerous computer illustrations and tutorials using MATLAB®and Maple® Covers the major topics of vector geometry, differentiation, and integration in several variables Instructors’ ancillaries available upon adoption
Publisher: Mercury Learning and Information
ISBN: 1683929179
Category : Mathematics
Languages : en
Pages : 491
Book Description
This book is designed primarily for undergraduates in mathematics, engineering, and the physical sciences. Rather than concentrating on technical skills, it focuses on a deeper understanding of the subject by providing many unusual and challenging examples. The basic topics of vector geometry, differentiation and integration in several variables are explored. Furthermore, it can be used to impower the mathematical knowledge for Artificial Intelligence (AI) concepts. It also provides numerous computer illustrations and tutorials using MATLAB® and Maple®, that bridge the gap between analysis and computation. Partial solutions and instructor ancillaries available for use as a textbook. FEATURES Includes numerous computer illustrations and tutorials using MATLAB®and Maple® Covers the major topics of vector geometry, differentiation, and integration in several variables Instructors’ ancillaries available upon adoption
Maple By Example
Author: Martha L. Abell
Publisher: Elsevier
ISBN: 0080496377
Category : Computers
Languages : en
Pages : 563
Book Description
Maple by Example, Third Edition, is a reference/text for beginning and experienced students, professional engineers, and other Maple users. This new edition has been updated to be compatible with the most recent release of the Maple software. Coverage includes built-in Maple commands used in courses and practices that involve calculus, linear algebra, business mathematics, ordinary and partial differential equations, numerical methods, graphics and more. Updated coverage of Maple features and functions Backwards compatible for all versions New applications from a variety of fields, including biology, physics and engineering Expanded topics with many additional examples
Publisher: Elsevier
ISBN: 0080496377
Category : Computers
Languages : en
Pages : 563
Book Description
Maple by Example, Third Edition, is a reference/text for beginning and experienced students, professional engineers, and other Maple users. This new edition has been updated to be compatible with the most recent release of the Maple software. Coverage includes built-in Maple commands used in courses and practices that involve calculus, linear algebra, business mathematics, ordinary and partial differential equations, numerical methods, graphics and more. Updated coverage of Maple features and functions Backwards compatible for all versions New applications from a variety of fields, including biology, physics and engineering Expanded topics with many additional examples
Maple
Author: Bernard V Liengme
Publisher: Morgan & Claypool Publishers
ISBN: 1643274880
Category : Science
Languages : en
Pages : 171
Book Description
Maple is a comprehensive symbolic mathematics application which is well suited for demonstrating physical science topics and solving associated problems. Because Maple is such a rich application, it has a somewhat steep learning curve. Most existing texts concentrate on mathematics; the Maple help facility is too detailed and lacks physical science examples, many Maple-related websites are out of date giving readers information on older Maple versions. This book records the author's journey of discovery; he was familiar with SMath but not with Maple and set out to learn the more advanced application. It leads readers through the basic Maple features with physical science worked examples, giving them a firm base on which to build if more complex features interest them.
Publisher: Morgan & Claypool Publishers
ISBN: 1643274880
Category : Science
Languages : en
Pages : 171
Book Description
Maple is a comprehensive symbolic mathematics application which is well suited for demonstrating physical science topics and solving associated problems. Because Maple is such a rich application, it has a somewhat steep learning curve. Most existing texts concentrate on mathematics; the Maple help facility is too detailed and lacks physical science examples, many Maple-related websites are out of date giving readers information on older Maple versions. This book records the author's journey of discovery; he was familiar with SMath but not with Maple and set out to learn the more advanced application. It leads readers through the basic Maple features with physical science worked examples, giving them a firm base on which to build if more complex features interest them.
Principles of Linear Algebra With Maple
Author: Kenneth M. Shiskowski
Publisher: Wiley
ISBN: 9780470637593
Category : Mathematics
Languages : en
Pages : 0
Book Description
An accessible introduction to the theoretical and computational aspects of linear algebra using MapleTM Many topics in linear algebra can be computationally intensive, and software programs often serve as important tools for understanding challenging concepts and visualizing the geometric aspects of the subject. Principles of Linear Algebra with Maple uniquely addresses the quickly growing intersection between subject theory and numerical computation, providing all of the commands required to solve complex and computationally challenging linear algebra problems using Maple. The authors supply an informal, accessible, and easy-to-follow treatment of key topics often found in a first course in linear algebra. Requiring no prior knowledge of the software, the book begins with an introduction to the commands and programming guidelines for working with Maple. Next, the book explores linear systems of equations and matrices, applications of linear systems and matrices, determinants, inverses, and Cramer's rule. Basic linear algebra topics such as vectors, dot product, cross product, and vector projection are explained, as well as the more advanced topics of rotations in space, rolling a circle along a curve, and the TNB Frame. Subsequent chapters feature coverage of linear transformations from Rn to Rm, the geometry of linear and affine transformations, least squares fits and pseudoinverses, and eigenvalues and eigenvectors. The authors explore several topics that are not often found in introductory linear algebra books, including sensitivity to error and the effects of linear and affine maps on the geometry of objects. The Maple software highlights the topic's visual nature, as the book is complete with numerous graphics in two and three dimensions, animations, symbolic manipulations, numerical computations, and programming. In addition, a related Web site features supplemental material, including Maple code for each chapter's problems, solutions, and color versions of the book's figures. Extensively class-tested to ensure an accessible presentation, Principles of Linear Algebra with Maple is an excellent book for courses on linear algebra at the undergraduate level. It is also an ideal reference for students and professionals who would like to gain a further understanding of the use of Maple to solve linear algebra problems.
Publisher: Wiley
ISBN: 9780470637593
Category : Mathematics
Languages : en
Pages : 0
Book Description
An accessible introduction to the theoretical and computational aspects of linear algebra using MapleTM Many topics in linear algebra can be computationally intensive, and software programs often serve as important tools for understanding challenging concepts and visualizing the geometric aspects of the subject. Principles of Linear Algebra with Maple uniquely addresses the quickly growing intersection between subject theory and numerical computation, providing all of the commands required to solve complex and computationally challenging linear algebra problems using Maple. The authors supply an informal, accessible, and easy-to-follow treatment of key topics often found in a first course in linear algebra. Requiring no prior knowledge of the software, the book begins with an introduction to the commands and programming guidelines for working with Maple. Next, the book explores linear systems of equations and matrices, applications of linear systems and matrices, determinants, inverses, and Cramer's rule. Basic linear algebra topics such as vectors, dot product, cross product, and vector projection are explained, as well as the more advanced topics of rotations in space, rolling a circle along a curve, and the TNB Frame. Subsequent chapters feature coverage of linear transformations from Rn to Rm, the geometry of linear and affine transformations, least squares fits and pseudoinverses, and eigenvalues and eigenvectors. The authors explore several topics that are not often found in introductory linear algebra books, including sensitivity to error and the effects of linear and affine maps on the geometry of objects. The Maple software highlights the topic's visual nature, as the book is complete with numerous graphics in two and three dimensions, animations, symbolic manipulations, numerical computations, and programming. In addition, a related Web site features supplemental material, including Maple code for each chapter's problems, solutions, and color versions of the book's figures. Extensively class-tested to ensure an accessible presentation, Principles of Linear Algebra with Maple is an excellent book for courses on linear algebra at the undergraduate level. It is also an ideal reference for students and professionals who would like to gain a further understanding of the use of Maple to solve linear algebra problems.
Mathematical Methods for Physics
Author: J. R. Claycomb
Publisher: Stylus Publishing, LLC
ISBN: 1683920996
Category : Science
Languages : en
Pages : 1122
Book Description
This book may be used by students and professionals in physics and engineering that have completed first-year calculus and physics. An introductory chapter reviews algebra, trigonometry, units and complex numbers that are frequently used in physics. Examples using MATLAB and Maple for symbolic and numerical calculations in physics with a variety of plotting features are included in all 16 chapters. The book applies many of mathematical concepts covered in Chapters 1-9 to fundamental physics topics in mechanics, electromagnetics; quantum mechanics and relativity in Chapters 10-16. Companion files are included with MATLAB and Maple worksheets and files, and all of the figures from the text. Features: • Each chapter includes the mathematical development of the concept with numerous examples • MATLAB & Maple examples are integrated in each chapter throughout the book • Applies the mathematical concepts to fundamental physics principles such as relativity, mechanics, electromagnetics, etc. • Introduces basic MATLAB and Maple commands and programming structures • Includes companion files with MATLAB and Maple files and worksheets, and all of the figures from the text
Publisher: Stylus Publishing, LLC
ISBN: 1683920996
Category : Science
Languages : en
Pages : 1122
Book Description
This book may be used by students and professionals in physics and engineering that have completed first-year calculus and physics. An introductory chapter reviews algebra, trigonometry, units and complex numbers that are frequently used in physics. Examples using MATLAB and Maple for symbolic and numerical calculations in physics with a variety of plotting features are included in all 16 chapters. The book applies many of mathematical concepts covered in Chapters 1-9 to fundamental physics topics in mechanics, electromagnetics; quantum mechanics and relativity in Chapters 10-16. Companion files are included with MATLAB and Maple worksheets and files, and all of the figures from the text. Features: • Each chapter includes the mathematical development of the concept with numerous examples • MATLAB & Maple examples are integrated in each chapter throughout the book • Applies the mathematical concepts to fundamental physics principles such as relativity, mechanics, electromagnetics, etc. • Introduces basic MATLAB and Maple commands and programming structures • Includes companion files with MATLAB and Maple files and worksheets, and all of the figures from the text