Author: Rob A. Rutenbar
Publisher: John Wiley & Sons
ISBN: 047122782X
Category : Technology & Engineering
Languages : en
Pages : 773
Book Description
The tools and techniques you need to break the analog design bottleneck! Ten years ago, analog seemed to be a dead-end technology. Today, System-on-Chip (SoC) designs are increasingly mixed-signal designs. With the advent of application-specific integrated circuits (ASIC) technologies that can integrate both analog and digital functions on a single chip, analog has become more crucial than ever to the design process. Today, designers are moving beyond hand-crafted, one-transistor-at-a-time methods. They are using new circuit and physical synthesis tools to design practical analog circuits; new modeling and analysis tools to allow rapid exploration of system level alternatives; and new simulation tools to provide accurate answers for analog circuit behaviors and interactions that were considered impossible to handle only a few years ago. To give circuit designers and CAD professionals a better understanding of the history and the current state of the art in the field, this volume collects in one place the essential set of analog CAD papers that form the foundation of today's new analog design automation tools. Areas covered are: * Analog synthesis * Symbolic analysis * Analog layout * Analog modeling and analysis * Specialized analog simulation * Circuit centering and yield optimization * Circuit testing Computer-Aided Design of Analog Integrated Circuits and Systems is the cutting-edge reference that will be an invaluable resource for every semiconductor circuit designer and CAD professional who hopes to break the analog design bottleneck.
Computer-Aided Design of Analog Integrated Circuits and Systems
Author: Rob A. Rutenbar
Publisher: John Wiley & Sons
ISBN: 047122782X
Category : Technology & Engineering
Languages : en
Pages : 773
Book Description
The tools and techniques you need to break the analog design bottleneck! Ten years ago, analog seemed to be a dead-end technology. Today, System-on-Chip (SoC) designs are increasingly mixed-signal designs. With the advent of application-specific integrated circuits (ASIC) technologies that can integrate both analog and digital functions on a single chip, analog has become more crucial than ever to the design process. Today, designers are moving beyond hand-crafted, one-transistor-at-a-time methods. They are using new circuit and physical synthesis tools to design practical analog circuits; new modeling and analysis tools to allow rapid exploration of system level alternatives; and new simulation tools to provide accurate answers for analog circuit behaviors and interactions that were considered impossible to handle only a few years ago. To give circuit designers and CAD professionals a better understanding of the history and the current state of the art in the field, this volume collects in one place the essential set of analog CAD papers that form the foundation of today's new analog design automation tools. Areas covered are: * Analog synthesis * Symbolic analysis * Analog layout * Analog modeling and analysis * Specialized analog simulation * Circuit centering and yield optimization * Circuit testing Computer-Aided Design of Analog Integrated Circuits and Systems is the cutting-edge reference that will be an invaluable resource for every semiconductor circuit designer and CAD professional who hopes to break the analog design bottleneck.
Publisher: John Wiley & Sons
ISBN: 047122782X
Category : Technology & Engineering
Languages : en
Pages : 773
Book Description
The tools and techniques you need to break the analog design bottleneck! Ten years ago, analog seemed to be a dead-end technology. Today, System-on-Chip (SoC) designs are increasingly mixed-signal designs. With the advent of application-specific integrated circuits (ASIC) technologies that can integrate both analog and digital functions on a single chip, analog has become more crucial than ever to the design process. Today, designers are moving beyond hand-crafted, one-transistor-at-a-time methods. They are using new circuit and physical synthesis tools to design practical analog circuits; new modeling and analysis tools to allow rapid exploration of system level alternatives; and new simulation tools to provide accurate answers for analog circuit behaviors and interactions that were considered impossible to handle only a few years ago. To give circuit designers and CAD professionals a better understanding of the history and the current state of the art in the field, this volume collects in one place the essential set of analog CAD papers that form the foundation of today's new analog design automation tools. Areas covered are: * Analog synthesis * Symbolic analysis * Analog layout * Analog modeling and analysis * Specialized analog simulation * Circuit centering and yield optimization * Circuit testing Computer-Aided Design of Analog Integrated Circuits and Systems is the cutting-edge reference that will be an invaluable resource for every semiconductor circuit designer and CAD professional who hopes to break the analog design bottleneck.
CAD of Circuits and Integrated Systems
Author: Ali Mahdoum
Publisher: John Wiley & Sons
ISBN: 1786305976
Category : Technology & Engineering
Languages : en
Pages : 288
Book Description
This book addresses the difficulty of obtaining a quality solution, that is, pre optimal or even optimal, in a reasonable time from a central processing unit (CPU). As polynomial problems can be treated by exact methods, the problem posed concerns non-polynomial problems, for which it is necessary to develop efficient algorithms based on heuristics or meta-heuristics. Chapter 3 of this book demonstrates how to develop such algorithms, which are characterized by: an initialization of argued solutions (sometimes, the global optimum can be obtained from such an initialization); a non-random generation of solutions (to avoid generating the same solution several times, or even generating solutions that cannot be achieved); avoidance of being trapped by a local optimum; good use of CPU time by reducing the size of the space of solutions to be explored (which is often very large for such problems) without compromising the quality of the solution; plus a reasoned displacement from one solution to another, to improve the quality of the solution as the processing is carried out. These aspects are applied to concrete applications in the design of integrated circuits and systems at various levels. To do this and to help the reader better understand this problem, Chapters 1 and 2 present basic notions on computational complexity, and the design of integrated circuits and systems.
Publisher: John Wiley & Sons
ISBN: 1786305976
Category : Technology & Engineering
Languages : en
Pages : 288
Book Description
This book addresses the difficulty of obtaining a quality solution, that is, pre optimal or even optimal, in a reasonable time from a central processing unit (CPU). As polynomial problems can be treated by exact methods, the problem posed concerns non-polynomial problems, for which it is necessary to develop efficient algorithms based on heuristics or meta-heuristics. Chapter 3 of this book demonstrates how to develop such algorithms, which are characterized by: an initialization of argued solutions (sometimes, the global optimum can be obtained from such an initialization); a non-random generation of solutions (to avoid generating the same solution several times, or even generating solutions that cannot be achieved); avoidance of being trapped by a local optimum; good use of CPU time by reducing the size of the space of solutions to be explored (which is often very large for such problems) without compromising the quality of the solution; plus a reasoned displacement from one solution to another, to improve the quality of the solution as the processing is carried out. These aspects are applied to concrete applications in the design of integrated circuits and systems at various levels. To do this and to help the reader better understand this problem, Chapters 1 and 2 present basic notions on computational complexity, and the design of integrated circuits and systems.
Thermal and Power Management of Integrated Circuits
Author: Arman Vassighi
Publisher: Springer Science & Business Media
ISBN: 0387297499
Category : Technology & Engineering
Languages : en
Pages : 188
Book Description
In Thermal and Power Management of Integrated Circuits, power and thermal management issues in integrated circuits during normal operating conditions and stress operating conditions are addressed. Thermal management in VLSI circuits is becoming an integral part of the design, test, and manufacturing. Proper thermal management is the key to achieve high performance, quality and reliability. Performance and reliability of integrated circuits are strong functions of the junction temperature. A small increase in junction temperature may result in significant reduction in the device lifetime. This book reviews the significance of the junction temperature as a reliability measure under nominal and burn-in conditions. The latest research in the area of electro-thermal modeling of integrated circuits will also be presented. Recent models and associated CAD tools are covered and various techniques at the circuit and system levels are reviewed. Subsequently, the authors provide an insight into the concept of thermal runaway and how it may best be avoided. A section on low temperature operation of integrated circuits concludes the book.
Publisher: Springer Science & Business Media
ISBN: 0387297499
Category : Technology & Engineering
Languages : en
Pages : 188
Book Description
In Thermal and Power Management of Integrated Circuits, power and thermal management issues in integrated circuits during normal operating conditions and stress operating conditions are addressed. Thermal management in VLSI circuits is becoming an integral part of the design, test, and manufacturing. Proper thermal management is the key to achieve high performance, quality and reliability. Performance and reliability of integrated circuits are strong functions of the junction temperature. A small increase in junction temperature may result in significant reduction in the device lifetime. This book reviews the significance of the junction temperature as a reliability measure under nominal and burn-in conditions. The latest research in the area of electro-thermal modeling of integrated circuits will also be presented. Recent models and associated CAD tools are covered and various techniques at the circuit and system levels are reviewed. Subsequently, the authors provide an insight into the concept of thermal runaway and how it may best be avoided. A section on low temperature operation of integrated circuits concludes the book.
Three-Dimensional Integrated Circuit Design
Author: Yuan Xie
Publisher: Springer Science & Business Media
ISBN: 144190784X
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
We live in a time of great change. In the electronics world, the last several decades have seen unprecedented growth and advancement, described by Moore’s law. This observation stated that transistor density in integrated circuits doubles every 1. 5–2 years. This came with the simultaneous improvement of individual device perf- mance as well as the reduction of device power such that the total power of the resulting ICs remained under control. No trend remains constant forever, and this is unfortunately the case with Moore’s law. The trouble began a number of years ago when CMOS devices were no longer able to proceed along the classical scaling trends. Key device parameters such as gate oxide thickness were simply no longer able to scale. As a result, device o- state currents began to creep up at an alarming rate. These continuing problems with classical scaling have led to a leveling off of IC clock speeds to the range of several GHz. Of course, chips can be clocked higher but the thermal issues become unmanageable. This has led to the recent trend toward microprocessors with mul- ple cores, each running at a few GHz at the most. The goal is to continue improving performance via parallelism by adding more and more cores instead of increasing speed. The challenge here is to ensure that general purpose codes can be ef?ciently parallelized. There is another potential solution to the problem of how to improve CMOS technology performance: three-dimensional integrated circuits (3D ICs).
Publisher: Springer Science & Business Media
ISBN: 144190784X
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
We live in a time of great change. In the electronics world, the last several decades have seen unprecedented growth and advancement, described by Moore’s law. This observation stated that transistor density in integrated circuits doubles every 1. 5–2 years. This came with the simultaneous improvement of individual device perf- mance as well as the reduction of device power such that the total power of the resulting ICs remained under control. No trend remains constant forever, and this is unfortunately the case with Moore’s law. The trouble began a number of years ago when CMOS devices were no longer able to proceed along the classical scaling trends. Key device parameters such as gate oxide thickness were simply no longer able to scale. As a result, device o- state currents began to creep up at an alarming rate. These continuing problems with classical scaling have led to a leveling off of IC clock speeds to the range of several GHz. Of course, chips can be clocked higher but the thermal issues become unmanageable. This has led to the recent trend toward microprocessors with mul- ple cores, each running at a few GHz at the most. The goal is to continue improving performance via parallelism by adding more and more cores instead of increasing speed. The challenge here is to ensure that general purpose codes can be ef?ciently parallelized. There is another potential solution to the problem of how to improve CMOS technology performance: three-dimensional integrated circuits (3D ICs).
A Top-Down, Constraint-Driven Design Methodology for Analog Integrated Circuits
Author: Henry Chang
Publisher: Springer Science & Business Media
ISBN: 9780792397946
Category : Computers
Languages : en
Pages : 394
Book Description
Analog circuit design is often the bottleneck when designing mixed analog-digital systems. A Top-Down, Constraint-Driven Design Methodology for Analog Integrated Circuits presents a new methodology based on a top-down, constraint-driven design paradigm that provides a solution to this problem. This methodology has two principal advantages: (1) it provides a high probability for the first silicon which meets all specifications, and (2) it shortens the design cycle. A Top-Down, Constraint-Driven Design Methodology for Analog Integrated Circuits is part of an ongoing research effort at the University of California at Berkeley in the Electrical Engineering and Computer Sciences Department. Many faculty and students, past and present, are working on this design methodology and its supporting tools. The principal goals are: (1) developing the design methodology, (2) developing and applying new tools, and (3) `proving' the methodology by undertaking `industrial strength' design examples. The work presented here is neither a beginning nor an end in the development of a complete top-down, constraint-driven design methodology, but rather a step in its development. This work is divided into three parts. Chapter 2 presents the design methodology along with foundation material. Chapters 3-8 describe supporting concepts for the methodology, from behavioral simulation and modeling to circuit module generators. Finally, Chapters 9-11 illustrate the methodology in detail by presenting the entire design cycle through three large-scale examples. These include the design of a current source D/A converter, a Sigma-Delta A/D converter, and a video driver system. Chapter 12 presents conclusions and current research topics. A Top-Down, Constraint-Driven Design Methodology for Analog Integrated Circuits will be of interest to analog and mixed-signal designers as well as CAD tool developers.
Publisher: Springer Science & Business Media
ISBN: 9780792397946
Category : Computers
Languages : en
Pages : 394
Book Description
Analog circuit design is often the bottleneck when designing mixed analog-digital systems. A Top-Down, Constraint-Driven Design Methodology for Analog Integrated Circuits presents a new methodology based on a top-down, constraint-driven design paradigm that provides a solution to this problem. This methodology has two principal advantages: (1) it provides a high probability for the first silicon which meets all specifications, and (2) it shortens the design cycle. A Top-Down, Constraint-Driven Design Methodology for Analog Integrated Circuits is part of an ongoing research effort at the University of California at Berkeley in the Electrical Engineering and Computer Sciences Department. Many faculty and students, past and present, are working on this design methodology and its supporting tools. The principal goals are: (1) developing the design methodology, (2) developing and applying new tools, and (3) `proving' the methodology by undertaking `industrial strength' design examples. The work presented here is neither a beginning nor an end in the development of a complete top-down, constraint-driven design methodology, but rather a step in its development. This work is divided into three parts. Chapter 2 presents the design methodology along with foundation material. Chapters 3-8 describe supporting concepts for the methodology, from behavioral simulation and modeling to circuit module generators. Finally, Chapters 9-11 illustrate the methodology in detail by presenting the entire design cycle through three large-scale examples. These include the design of a current source D/A converter, a Sigma-Delta A/D converter, and a video driver system. Chapter 12 presents conclusions and current research topics. A Top-Down, Constraint-Driven Design Methodology for Analog Integrated Circuits will be of interest to analog and mixed-signal designers as well as CAD tool developers.
Nano-scale CMOS Analog Circuits
Author: Soumya Pandit
Publisher: CRC Press
ISBN: 1466564288
Category : Technology & Engineering
Languages : en
Pages : 397
Book Description
Reliability concerns and the limitations of process technology can sometimes restrict the innovation process involved in designing nano-scale analog circuits. The success of nano-scale analog circuit design requires repeat experimentation, correct analysis of the device physics, process technology, and adequate use of the knowledge database. Starting with the basics, Nano-Scale CMOS Analog Circuits: Models and CAD Techniques for High-Level Design introduces the essential fundamental concepts for designing analog circuits with optimal performances. This book explains the links between the physics and technology of scaled MOS transistors and the design and simulation of nano-scale analog circuits. It also explores the development of structured computer-aided design (CAD) techniques for architecture-level and circuit-level design of analog circuits. The book outlines the general trends of technology scaling with respect to device geometry, process parameters, and supply voltage. It describes models and optimization techniques, as well as the compact modeling of scaled MOS transistors for VLSI circuit simulation. • Includes two learning-based methods: the artificial neural network (ANN) and the least-squares support vector machine (LS-SVM) method • Provides case studies demonstrating the practical use of these two methods • Explores circuit sizing and specification translation tasks • Introduces the particle swarm optimization technique and provides examples of sizing analog circuits • Discusses the advanced effects of scaled MOS transistors like narrow width effects, and vertical and lateral channel engineering Nano-Scale CMOS Analog Circuits: Models and CAD Techniques for High-Level Design describes the models and CAD techniques, explores the physics of MOS transistors, and considers the design challenges involving statistical variations of process technology parameters and reliability constraints related to circuit design.
Publisher: CRC Press
ISBN: 1466564288
Category : Technology & Engineering
Languages : en
Pages : 397
Book Description
Reliability concerns and the limitations of process technology can sometimes restrict the innovation process involved in designing nano-scale analog circuits. The success of nano-scale analog circuit design requires repeat experimentation, correct analysis of the device physics, process technology, and adequate use of the knowledge database. Starting with the basics, Nano-Scale CMOS Analog Circuits: Models and CAD Techniques for High-Level Design introduces the essential fundamental concepts for designing analog circuits with optimal performances. This book explains the links between the physics and technology of scaled MOS transistors and the design and simulation of nano-scale analog circuits. It also explores the development of structured computer-aided design (CAD) techniques for architecture-level and circuit-level design of analog circuits. The book outlines the general trends of technology scaling with respect to device geometry, process parameters, and supply voltage. It describes models and optimization techniques, as well as the compact modeling of scaled MOS transistors for VLSI circuit simulation. • Includes two learning-based methods: the artificial neural network (ANN) and the least-squares support vector machine (LS-SVM) method • Provides case studies demonstrating the practical use of these two methods • Explores circuit sizing and specification translation tasks • Introduces the particle swarm optimization technique and provides examples of sizing analog circuits • Discusses the advanced effects of scaled MOS transistors like narrow width effects, and vertical and lateral channel engineering Nano-Scale CMOS Analog Circuits: Models and CAD Techniques for High-Level Design describes the models and CAD techniques, explores the physics of MOS transistors, and considers the design challenges involving statistical variations of process technology parameters and reliability constraints related to circuit design.
Distortion Analysis of Analog Integrated Circuits
Author: Piet Wambacq
Publisher: Springer Science & Business Media
ISBN: 147575003X
Category : Technology & Engineering
Languages : en
Pages : 528
Book Description
The analysis and prediction of nonlinear behavior in electronic circuits has long been a topic of concern for analog circuit designers. The recent explosion of interest in portable electronics such as cellular telephones, cordless telephones and other applications has served to reinforce the importance of these issues. The need now often arises to predict and optimize the distortion performance of diverse electronic circuit configurations operating in the gigahertz frequency range, where nonlinear reactive effects often dominate. However, there have historically been few sources available from which design engineers could obtain information on analysis tech niques suitable for tackling these important problems. I am sure that the analog circuit design community will thus welcome this work by Dr. Wambacq and Professor Sansen as a major contribution to the analog circuit design literature in the area of distortion analysis of electronic circuits. I am personally looking forward to hav ing a copy readily available for reference when designing integrated circuits for communication systems.
Publisher: Springer Science & Business Media
ISBN: 147575003X
Category : Technology & Engineering
Languages : en
Pages : 528
Book Description
The analysis and prediction of nonlinear behavior in electronic circuits has long been a topic of concern for analog circuit designers. The recent explosion of interest in portable electronics such as cellular telephones, cordless telephones and other applications has served to reinforce the importance of these issues. The need now often arises to predict and optimize the distortion performance of diverse electronic circuit configurations operating in the gigahertz frequency range, where nonlinear reactive effects often dominate. However, there have historically been few sources available from which design engineers could obtain information on analysis tech niques suitable for tackling these important problems. I am sure that the analog circuit design community will thus welcome this work by Dr. Wambacq and Professor Sansen as a major contribution to the analog circuit design literature in the area of distortion analysis of electronic circuits. I am personally looking forward to hav ing a copy readily available for reference when designing integrated circuits for communication systems.
Variation-Aware Design of Custom Integrated Circuits: A Hands-on Field Guide
Author: Trent McConaghy
Publisher: Springer Science & Business Media
ISBN: 146142268X
Category : Technology & Engineering
Languages : en
Pages : 198
Book Description
This book targets custom IC designers who are encountering variation issues in their designs, especially for modern process nodes at 45nm and below, such as statistical process variations, environmental variations, and layout effects. It teaches them the state-of-the-art in Variation-Aware Design tools, which help the designer to analyze quickly the variation effects, identify the problems, and fix the problems. Furthermore, this book describes the algorithms and algorithm behavior/performance/limitations, which is of use to designers considering these tools, designers using these tools, CAD researchers, and CAD managers.
Publisher: Springer Science & Business Media
ISBN: 146142268X
Category : Technology & Engineering
Languages : en
Pages : 198
Book Description
This book targets custom IC designers who are encountering variation issues in their designs, especially for modern process nodes at 45nm and below, such as statistical process variations, environmental variations, and layout effects. It teaches them the state-of-the-art in Variation-Aware Design tools, which help the designer to analyze quickly the variation effects, identify the problems, and fix the problems. Furthermore, this book describes the algorithms and algorithm behavior/performance/limitations, which is of use to designers considering these tools, designers using these tools, CAD researchers, and CAD managers.
Low-Power CMOS Circuits
Author: Christian Piguet
Publisher: CRC Press
ISBN: 1420036505
Category : Technology & Engineering
Languages : en
Pages : 438
Book Description
The power consumption of microprocessors is one of the most important challenges of high-performance chips and portable devices. In chapters drawn from Piguet's recently published Low-Power Electronics Design, Low-Power CMOS Circuits: Technology, Logic Design, and CAD Tools addresses the design of low-power circuitry in deep submicron technologies. It provides a focused reference for specialists involved in designing low-power circuitry, from transistors to logic gates. The book is organized into three broad sections for convenient access. The first examines the history of low-power electronics along with a look at emerging and possible future technologies. It also considers other technologies, such as nanotechnologies and optical chips, that may be useful in designing integrated circuits. The second part explains the techniques used to reduce power consumption at low levels. These include clock gating, leakage reduction, interconnecting and communication on chips, and adiabatic circuits. The final section discusses various CAD tools for designing low-power circuits. This section includes three chapters that demonstrate the tools and low-power design issues at three major companies that produce logic synthesizers. Providing detailed examinations contributed by leading experts, Low-Power CMOS Circuits: Technology, Logic Design, and CAD Tools supplies authoritative information on how to design and model for high performance with low power consumption in modern integrated circuits. It is a must-read for anyone designing modern computers or embedded systems.
Publisher: CRC Press
ISBN: 1420036505
Category : Technology & Engineering
Languages : en
Pages : 438
Book Description
The power consumption of microprocessors is one of the most important challenges of high-performance chips and portable devices. In chapters drawn from Piguet's recently published Low-Power Electronics Design, Low-Power CMOS Circuits: Technology, Logic Design, and CAD Tools addresses the design of low-power circuitry in deep submicron technologies. It provides a focused reference for specialists involved in designing low-power circuitry, from transistors to logic gates. The book is organized into three broad sections for convenient access. The first examines the history of low-power electronics along with a look at emerging and possible future technologies. It also considers other technologies, such as nanotechnologies and optical chips, that may be useful in designing integrated circuits. The second part explains the techniques used to reduce power consumption at low levels. These include clock gating, leakage reduction, interconnecting and communication on chips, and adiabatic circuits. The final section discusses various CAD tools for designing low-power circuits. This section includes three chapters that demonstrate the tools and low-power design issues at three major companies that produce logic synthesizers. Providing detailed examinations contributed by leading experts, Low-Power CMOS Circuits: Technology, Logic Design, and CAD Tools supplies authoritative information on how to design and model for high performance with low power consumption in modern integrated circuits. It is a must-read for anyone designing modern computers or embedded systems.
Compact Models for Integrated Circuit Design
Author: Samar K. Saha
Publisher: CRC Press
ISBN: 148224067X
Category : Technology & Engineering
Languages : en
Pages : 548
Book Description
Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond provides a modern treatise on compact models for circuit computer-aided design (CAD). Written by an author with more than 25 years of industry experience in semiconductor processes, devices, and circuit CAD, and more than 10 years of academic experience in teaching compact modeling courses, this first-of-its-kind book on compact SPICE models for very-large-scale-integrated (VLSI) chip design offers a balanced presentation of compact modeling crucial for addressing current modeling challenges and understanding new models for emerging devices. Starting from basic semiconductor physics and covering state-of-the-art device regimes from conventional micron to nanometer, this text: Presents industry standard models for bipolar-junction transistors (BJTs), metal-oxide-semiconductor (MOS) field-effect-transistors (FETs), FinFETs, and tunnel field-effect transistors (TFETs), along with statistical MOS models Discusses the major issue of process variability, which severely impacts device and circuit performance in advanced technologies and requires statistical compact models Promotes further research of the evolution and development of compact models for VLSI circuit design and analysis Supplies fundamental and practical knowledge necessary for efficient integrated circuit (IC) design using nanoscale devices Includes exercise problems at the end of each chapter and extensive references at the end of the book Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond is intended for senior undergraduate and graduate courses in electrical and electronics engineering as well as for researchers and practitioners working in the area of electron devices. However, even those unfamiliar with semiconductor physics gain a solid grasp of compact modeling concepts from this book.
Publisher: CRC Press
ISBN: 148224067X
Category : Technology & Engineering
Languages : en
Pages : 548
Book Description
Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond provides a modern treatise on compact models for circuit computer-aided design (CAD). Written by an author with more than 25 years of industry experience in semiconductor processes, devices, and circuit CAD, and more than 10 years of academic experience in teaching compact modeling courses, this first-of-its-kind book on compact SPICE models for very-large-scale-integrated (VLSI) chip design offers a balanced presentation of compact modeling crucial for addressing current modeling challenges and understanding new models for emerging devices. Starting from basic semiconductor physics and covering state-of-the-art device regimes from conventional micron to nanometer, this text: Presents industry standard models for bipolar-junction transistors (BJTs), metal-oxide-semiconductor (MOS) field-effect-transistors (FETs), FinFETs, and tunnel field-effect transistors (TFETs), along with statistical MOS models Discusses the major issue of process variability, which severely impacts device and circuit performance in advanced technologies and requires statistical compact models Promotes further research of the evolution and development of compact models for VLSI circuit design and analysis Supplies fundamental and practical knowledge necessary for efficient integrated circuit (IC) design using nanoscale devices Includes exercise problems at the end of each chapter and extensive references at the end of the book Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond is intended for senior undergraduate and graduate courses in electrical and electronics engineering as well as for researchers and practitioners working in the area of electron devices. However, even those unfamiliar with semiconductor physics gain a solid grasp of compact modeling concepts from this book.