Author: Luk Arbuckle
Publisher: "O'Reilly Media, Inc."
ISBN: 1492053384
Category : Computers
Languages : en
Pages : 172
Book Description
How can you use data in a way that protects individual privacy but still provides useful and meaningful analytics? With this practical book, data architects and engineers will learn how to establish and integrate secure, repeatable anonymization processes into their data flows and analytics in a sustainable manner. Luk Arbuckle and Khaled El Emam from Privacy Analytics explore end-to-end solutions for anonymizing device and IoT data, based on collection models and use cases that address real business needs. These examples come from some of the most demanding data environments, such as healthcare, using approaches that have withstood the test of time. Create anonymization solutions diverse enough to cover a spectrum of use cases Match your solutions to the data you use, the people you share it with, and your analysis goals Build anonymization pipelines around various data collection models to cover different business needs Generate an anonymized version of original data or use an analytics platform to generate anonymized outputs Examine the ethical issues around the use of anonymized data
Building an Anonymization Pipeline
Author: Luk Arbuckle
Publisher: "O'Reilly Media, Inc."
ISBN: 1492053384
Category : Computers
Languages : en
Pages : 172
Book Description
How can you use data in a way that protects individual privacy but still provides useful and meaningful analytics? With this practical book, data architects and engineers will learn how to establish and integrate secure, repeatable anonymization processes into their data flows and analytics in a sustainable manner. Luk Arbuckle and Khaled El Emam from Privacy Analytics explore end-to-end solutions for anonymizing device and IoT data, based on collection models and use cases that address real business needs. These examples come from some of the most demanding data environments, such as healthcare, using approaches that have withstood the test of time. Create anonymization solutions diverse enough to cover a spectrum of use cases Match your solutions to the data you use, the people you share it with, and your analysis goals Build anonymization pipelines around various data collection models to cover different business needs Generate an anonymized version of original data or use an analytics platform to generate anonymized outputs Examine the ethical issues around the use of anonymized data
Publisher: "O'Reilly Media, Inc."
ISBN: 1492053384
Category : Computers
Languages : en
Pages : 172
Book Description
How can you use data in a way that protects individual privacy but still provides useful and meaningful analytics? With this practical book, data architects and engineers will learn how to establish and integrate secure, repeatable anonymization processes into their data flows and analytics in a sustainable manner. Luk Arbuckle and Khaled El Emam from Privacy Analytics explore end-to-end solutions for anonymizing device and IoT data, based on collection models and use cases that address real business needs. These examples come from some of the most demanding data environments, such as healthcare, using approaches that have withstood the test of time. Create anonymization solutions diverse enough to cover a spectrum of use cases Match your solutions to the data you use, the people you share it with, and your analysis goals Build anonymization pipelines around various data collection models to cover different business needs Generate an anonymized version of original data or use an analytics platform to generate anonymized outputs Examine the ethical issues around the use of anonymized data
Building an Anonymization Pipeline
Author: Luk Arbuckle
Publisher:
ISBN: 9781492053422
Category : Anonymous persons
Languages : en
Pages : 150
Book Description
How can you use data in a way that protects individual privacy, but still ensures that data analytics will be useful and meaningful? With this practical book, data architects and engineers will learn how to implement and deploy anonymization solutions within a data collection pipeline. You'll establish and integrate secure, repeatable anonymization processes into your data flows and analytics in a sustainable manner. Luk Arbuckle and Khaled El Emam from Privacy Analytics explore end-to-end solutions for anonymizing data, based on data collection models and use cases enabled by real business needs. These examples come from some of the most demanding data environments, using approaches that have stood the test of time.
Publisher:
ISBN: 9781492053422
Category : Anonymous persons
Languages : en
Pages : 150
Book Description
How can you use data in a way that protects individual privacy, but still ensures that data analytics will be useful and meaningful? With this practical book, data architects and engineers will learn how to implement and deploy anonymization solutions within a data collection pipeline. You'll establish and integrate secure, repeatable anonymization processes into your data flows and analytics in a sustainable manner. Luk Arbuckle and Khaled El Emam from Privacy Analytics explore end-to-end solutions for anonymizing data, based on data collection models and use cases enabled by real business needs. These examples come from some of the most demanding data environments, using approaches that have stood the test of time.
Building an Anonymization Pipeline
Author: Luk Arbuckle
Publisher: O'Reilly Media
ISBN: 1492053406
Category : Computers
Languages : en
Pages : 167
Book Description
How can you use data in a way that protects individual privacy but still provides useful and meaningful analytics? With this practical book, data architects and engineers will learn how to establish and integrate secure, repeatable anonymization processes into their data flows and analytics in a sustainable manner. Luk Arbuckle and Khaled El Emam from Privacy Analytics explore end-to-end solutions for anonymizing device and IoT data, based on collection models and use cases that address real business needs. These examples come from some of the most demanding data environments, such as healthcare, using approaches that have withstood the test of time. Create anonymization solutions diverse enough to cover a spectrum of use cases Match your solutions to the data you use, the people you share it with, and your analysis goals Build anonymization pipelines around various data collection models to cover different business needs Generate an anonymized version of original data or use an analytics platform to generate anonymized outputs Examine the ethical issues around the use of anonymized data
Publisher: O'Reilly Media
ISBN: 1492053406
Category : Computers
Languages : en
Pages : 167
Book Description
How can you use data in a way that protects individual privacy but still provides useful and meaningful analytics? With this practical book, data architects and engineers will learn how to establish and integrate secure, repeatable anonymization processes into their data flows and analytics in a sustainable manner. Luk Arbuckle and Khaled El Emam from Privacy Analytics explore end-to-end solutions for anonymizing device and IoT data, based on collection models and use cases that address real business needs. These examples come from some of the most demanding data environments, such as healthcare, using approaches that have withstood the test of time. Create anonymization solutions diverse enough to cover a spectrum of use cases Match your solutions to the data you use, the people you share it with, and your analysis goals Build anonymization pipelines around various data collection models to cover different business needs Generate an anonymized version of original data or use an analytics platform to generate anonymized outputs Examine the ethical issues around the use of anonymized data
Building Machine Learning Pipelines
Author: Hannes Hapke
Publisher: O'Reilly Media
ISBN: 1492053163
Category : Computers
Languages : en
Pages : 367
Book Description
Companies are spending billions on machine learning projects, but it’s money wasted if the models can’t be deployed effectively. In this practical guide, Hannes Hapke and Catherine Nelson walk you through the steps of automating a machine learning pipeline using the TensorFlow ecosystem. You’ll learn the techniques and tools that will cut deployment time from days to minutes, so that you can focus on developing new models rather than maintaining legacy systems. Data scientists, machine learning engineers, and DevOps engineers will discover how to go beyond model development to successfully productize their data science projects, while managers will better understand the role they play in helping to accelerate these projects. Understand the steps to build a machine learning pipeline Build your pipeline using components from TensorFlow Extended Orchestrate your machine learning pipeline with Apache Beam, Apache Airflow, and Kubeflow Pipelines Work with data using TensorFlow Data Validation and TensorFlow Transform Analyze a model in detail using TensorFlow Model Analysis Examine fairness and bias in your model performance Deploy models with TensorFlow Serving or TensorFlow Lite for mobile devices Learn privacy-preserving machine learning techniques
Publisher: O'Reilly Media
ISBN: 1492053163
Category : Computers
Languages : en
Pages : 367
Book Description
Companies are spending billions on machine learning projects, but it’s money wasted if the models can’t be deployed effectively. In this practical guide, Hannes Hapke and Catherine Nelson walk you through the steps of automating a machine learning pipeline using the TensorFlow ecosystem. You’ll learn the techniques and tools that will cut deployment time from days to minutes, so that you can focus on developing new models rather than maintaining legacy systems. Data scientists, machine learning engineers, and DevOps engineers will discover how to go beyond model development to successfully productize their data science projects, while managers will better understand the role they play in helping to accelerate these projects. Understand the steps to build a machine learning pipeline Build your pipeline using components from TensorFlow Extended Orchestrate your machine learning pipeline with Apache Beam, Apache Airflow, and Kubeflow Pipelines Work with data using TensorFlow Data Validation and TensorFlow Transform Analyze a model in detail using TensorFlow Model Analysis Examine fairness and bias in your model performance Deploy models with TensorFlow Serving or TensorFlow Lite for mobile devices Learn privacy-preserving machine learning techniques
Ultimate MLOps for Machine Learning Models
Author: Saurabh Dorle
Publisher: Orange Education Pvt Ltd
ISBN: 8197651205
Category : Computers
Languages : en
Pages : 373
Book Description
TAGLINE The only MLOps guide you'll ever need KEY FEATURES ● Acquire a comprehensive understanding of the entire MLOps lifecycle, from model development to monitoring and governance. ● Gain expertise in building efficient MLOps pipelines with the help of practical guidance with real-world examples and case studies. ● Develop advanced skills to implement scalable solutions by understanding the latest trends/tools and best practices. DESCRIPTION This book is an essential resource for professionals aiming to streamline and optimize their machine learning operations. This comprehensive guide provides a thorough understanding of the MLOps life cycle, from model development and training to deployment and monitoring. By delving into the intricacies of each phase, the book equips readers with the knowledge and tools needed to create robust, scalable, and efficient machine learning workflows. Key chapters include a deep dive into essential MLOps tools and technologies, effective data pipeline management, and advanced model optimization techniques. The book also addresses critical aspects such as scalability challenges, data and model governance, and security in machine learning operations. Each topic is presented with practical insights and real-world case studies, enabling readers to apply best practices in their job roles. Whether you are a data scientist, ML engineer, or IT professional, this book empowers you to take your machine learning projects from concept to production with confidence. It equips you with the practical skills to ensure your models are reliable, secure, and compliant with regulations. By the end, you will be well-positioned to navigate the ever-evolving landscape of MLOps and unlock the true potential of your machine learning initiatives. WHAT WILL YOU LEARN ● Implement and manage end-to-end machine learning lifecycles. ● Utilize essential tools and technologies for MLOps effectively. ● Design and optimize data pipelines for efficient model training. ● Develop and train machine learning models with best practices. ● Deploy, monitor, and maintain models in production environments. ● Address scalability challenges and solutions in MLOps. ● Implement robust security practices to protect your ML systems. ● Ensure data governance, model compliance, and security in ML operations. ● Understand emerging trends in MLOps and stay ahead of the curve. WHO IS THIS BOOK FOR? This book is for data scientists, machine learning engineers, and data engineers aiming to master MLOps for effective model management in production. It’s also ideal for researchers and stakeholders seeking insights into how MLOps drives business strategy and scalability, as well as anyone with a basic grasp of Python and machine learning looking to enter the field of data science in production. TABLE OF CONTENTS 1. Introduction to MLOps 2. Understanding Machine Learning Lifecycle 3. Essential Tools and Technologies in MLOps 4. Data Pipelines and Management in MLOps 5. Model Development and Training 6. Model Optimization Techniques for Performance 7. Efficient Model Deployment and Monitoring Strategies 8. Scalability Challenges and Solutions in MLOps 9. Data, Model Governance, and Compliance in Production Environments 10. Security in Machine Learning Operations 11. Case Studies and Future Trends in MLOps Index
Publisher: Orange Education Pvt Ltd
ISBN: 8197651205
Category : Computers
Languages : en
Pages : 373
Book Description
TAGLINE The only MLOps guide you'll ever need KEY FEATURES ● Acquire a comprehensive understanding of the entire MLOps lifecycle, from model development to monitoring and governance. ● Gain expertise in building efficient MLOps pipelines with the help of practical guidance with real-world examples and case studies. ● Develop advanced skills to implement scalable solutions by understanding the latest trends/tools and best practices. DESCRIPTION This book is an essential resource for professionals aiming to streamline and optimize their machine learning operations. This comprehensive guide provides a thorough understanding of the MLOps life cycle, from model development and training to deployment and monitoring. By delving into the intricacies of each phase, the book equips readers with the knowledge and tools needed to create robust, scalable, and efficient machine learning workflows. Key chapters include a deep dive into essential MLOps tools and technologies, effective data pipeline management, and advanced model optimization techniques. The book also addresses critical aspects such as scalability challenges, data and model governance, and security in machine learning operations. Each topic is presented with practical insights and real-world case studies, enabling readers to apply best practices in their job roles. Whether you are a data scientist, ML engineer, or IT professional, this book empowers you to take your machine learning projects from concept to production with confidence. It equips you with the practical skills to ensure your models are reliable, secure, and compliant with regulations. By the end, you will be well-positioned to navigate the ever-evolving landscape of MLOps and unlock the true potential of your machine learning initiatives. WHAT WILL YOU LEARN ● Implement and manage end-to-end machine learning lifecycles. ● Utilize essential tools and technologies for MLOps effectively. ● Design and optimize data pipelines for efficient model training. ● Develop and train machine learning models with best practices. ● Deploy, monitor, and maintain models in production environments. ● Address scalability challenges and solutions in MLOps. ● Implement robust security practices to protect your ML systems. ● Ensure data governance, model compliance, and security in ML operations. ● Understand emerging trends in MLOps and stay ahead of the curve. WHO IS THIS BOOK FOR? This book is for data scientists, machine learning engineers, and data engineers aiming to master MLOps for effective model management in production. It’s also ideal for researchers and stakeholders seeking insights into how MLOps drives business strategy and scalability, as well as anyone with a basic grasp of Python and machine learning looking to enter the field of data science in production. TABLE OF CONTENTS 1. Introduction to MLOps 2. Understanding Machine Learning Lifecycle 3. Essential Tools and Technologies in MLOps 4. Data Pipelines and Management in MLOps 5. Model Development and Training 6. Model Optimization Techniques for Performance 7. Efficient Model Deployment and Monitoring Strategies 8. Scalability Challenges and Solutions in MLOps 9. Data, Model Governance, and Compliance in Production Environments 10. Security in Machine Learning Operations 11. Case Studies and Future Trends in MLOps Index
Serverless ETL and Analytics with AWS Glue
Author: Vishal Pathak
Publisher: Packt Publishing Ltd
ISBN: 1800562551
Category : Computers
Languages : en
Pages : 435
Book Description
Build efficient data lakes that can scale to virtually unlimited size using AWS Glue Key Features Book DescriptionOrganizations these days have gravitated toward services such as AWS Glue that undertake undifferentiated heavy lifting and provide serverless Spark, enabling you to create and manage data lakes in a serverless fashion. This guide shows you how AWS Glue can be used to solve real-world problems along with helping you learn about data processing, data integration, and building data lakes. Beginning with AWS Glue basics, this book teaches you how to perform various aspects of data analysis such as ad hoc queries, data visualization, and real-time analysis using this service. It also provides a walk-through of CI/CD for AWS Glue and how to shift left on quality using automated regression tests. You’ll find out how data security aspects such as access control, encryption, auditing, and networking are implemented, as well as getting to grips with useful techniques such as picking the right file format, compression, partitioning, and bucketing. As you advance, you’ll discover AWS Glue features such as crawlers, Lake Formation, governed tables, lineage, DataBrew, Glue Studio, and custom connectors. The concluding chapters help you to understand various performance tuning, troubleshooting, and monitoring options. By the end of this AWS book, you’ll be able to create, manage, troubleshoot, and deploy ETL pipelines using AWS Glue.What you will learn Apply various AWS Glue features to manage and create data lakes Use Glue DataBrew and Glue Studio for data preparation Optimize data layout in cloud storage to accelerate analytics workloads Manage metadata including database, table, and schema definitions Secure your data during access control, encryption, auditing, and networking Monitor AWS Glue jobs to detect delays and loss of data Integrate Spark ML and SageMaker with AWS Glue to create machine learning models Who this book is for ETL developers, data engineers, and data analysts
Publisher: Packt Publishing Ltd
ISBN: 1800562551
Category : Computers
Languages : en
Pages : 435
Book Description
Build efficient data lakes that can scale to virtually unlimited size using AWS Glue Key Features Book DescriptionOrganizations these days have gravitated toward services such as AWS Glue that undertake undifferentiated heavy lifting and provide serverless Spark, enabling you to create and manage data lakes in a serverless fashion. This guide shows you how AWS Glue can be used to solve real-world problems along with helping you learn about data processing, data integration, and building data lakes. Beginning with AWS Glue basics, this book teaches you how to perform various aspects of data analysis such as ad hoc queries, data visualization, and real-time analysis using this service. It also provides a walk-through of CI/CD for AWS Glue and how to shift left on quality using automated regression tests. You’ll find out how data security aspects such as access control, encryption, auditing, and networking are implemented, as well as getting to grips with useful techniques such as picking the right file format, compression, partitioning, and bucketing. As you advance, you’ll discover AWS Glue features such as crawlers, Lake Formation, governed tables, lineage, DataBrew, Glue Studio, and custom connectors. The concluding chapters help you to understand various performance tuning, troubleshooting, and monitoring options. By the end of this AWS book, you’ll be able to create, manage, troubleshoot, and deploy ETL pipelines using AWS Glue.What you will learn Apply various AWS Glue features to manage and create data lakes Use Glue DataBrew and Glue Studio for data preparation Optimize data layout in cloud storage to accelerate analytics workloads Manage metadata including database, table, and schema definitions Secure your data during access control, encryption, auditing, and networking Monitor AWS Glue jobs to detect delays and loss of data Integrate Spark ML and SageMaker with AWS Glue to create machine learning models Who this book is for ETL developers, data engineers, and data analysts
Practical Data Privacy
Author: Katharine Jarmul
Publisher: "O'Reilly Media, Inc."
ISBN: 1098129423
Category : Computers
Languages : en
Pages : 353
Book Description
Between major privacy regulations like the GDPR and CCPA and expensive and notorious data breaches, there has never been so much pressure to ensure data privacy. Unfortunately, integrating privacy into data systems is still complicated. This essential guide will give you a fundamental understanding of modern privacy building blocks, like differential privacy, federated learning, and encrypted computation. Based on hard-won lessons, this book provides solid advice and best practices for integrating breakthrough privacy-enhancing technologies into production systems. Practical Data Privacy answers important questions such as: What do privacy regulations like GDPR and CCPA mean for my data workflows and data science use cases? What does "anonymized data" really mean? How do I actually anonymize data? How does federated learning and analysis work? Homomorphic encryption sounds great, but is it ready for use? How do I compare and choose the best privacy-preserving technologies and methods? Are there open-source libraries that can help? How do I ensure that my data science projects are secure by default and private by design? How do I work with governance and infosec teams to implement internal policies appropriately?
Publisher: "O'Reilly Media, Inc."
ISBN: 1098129423
Category : Computers
Languages : en
Pages : 353
Book Description
Between major privacy regulations like the GDPR and CCPA and expensive and notorious data breaches, there has never been so much pressure to ensure data privacy. Unfortunately, integrating privacy into data systems is still complicated. This essential guide will give you a fundamental understanding of modern privacy building blocks, like differential privacy, federated learning, and encrypted computation. Based on hard-won lessons, this book provides solid advice and best practices for integrating breakthrough privacy-enhancing technologies into production systems. Practical Data Privacy answers important questions such as: What do privacy regulations like GDPR and CCPA mean for my data workflows and data science use cases? What does "anonymized data" really mean? How do I actually anonymize data? How does federated learning and analysis work? Homomorphic encryption sounds great, but is it ready for use? How do I compare and choose the best privacy-preserving technologies and methods? Are there open-source libraries that can help? How do I ensure that my data science projects are secure by default and private by design? How do I work with governance and infosec teams to implement internal policies appropriately?
At the Edge of AI
Author: Libuse Hannah Veprek
Publisher: transcript Verlag
ISBN: 3839472288
Category : Social Science
Languages : en
Pages : 331
Book Description
How are human computation systems developed in the field of citizen science to achieve what neither humans nor computers can do alone? Through multiple perspectives and methods, Libuse Hannah Veprek examines the imagination of these assemblages, their creation, and everyday negotiation in the interplay of various actors and play/science entanglements at the edge of AI. Focusing on their human-technology relations, this ethnographic study shows how these formations are marked by intraversions, as they change with technological advancements and the actors' goals, motivations, and practices. This work contributes to the constructive and critical ethnographic engagement with human-AI assemblages in the making.
Publisher: transcript Verlag
ISBN: 3839472288
Category : Social Science
Languages : en
Pages : 331
Book Description
How are human computation systems developed in the field of citizen science to achieve what neither humans nor computers can do alone? Through multiple perspectives and methods, Libuse Hannah Veprek examines the imagination of these assemblages, their creation, and everyday negotiation in the interplay of various actors and play/science entanglements at the edge of AI. Focusing on their human-technology relations, this ethnographic study shows how these formations are marked by intraversions, as they change with technological advancements and the actors' goals, motivations, and practices. This work contributes to the constructive and critical ethnographic engagement with human-AI assemblages in the making.
Applications of Intelligent Systems
Author: N. Petkov
Publisher: IOS Press
ISBN: 1614999295
Category : Computers
Languages : en
Pages : 370
Book Description
The deployment of intelligent systems to tackle complex processes is now commonplace in many fields from medicine and agriculture to industry and tourism. This book presents scientific contributions from the 1st International Conference on Applications of Intelligent Systems (APPIS 2018) held at the Museo Elder in Las Palmas de Gran Canaria, Spain, from 10 to 12 January 2018. The aim of APPIS 2018 was to bring together scientists working on the development of intelligent computer systems and methods for machine learning, artificial intelligence, pattern recognition, and related techniques with an emphasis on their application to various problems. The 34 peer-reviewed papers included here cover an extraordinarily wide variety of topics – everything from semi-supervised learning to matching electro-chemical sensor information with human odor perception – but what they all have in common is the design and application of intelligent systems and their role in tackling diverse and complex challenges. The book will be of particular interest to all those involved in the development and application of intelligent systems.
Publisher: IOS Press
ISBN: 1614999295
Category : Computers
Languages : en
Pages : 370
Book Description
The deployment of intelligent systems to tackle complex processes is now commonplace in many fields from medicine and agriculture to industry and tourism. This book presents scientific contributions from the 1st International Conference on Applications of Intelligent Systems (APPIS 2018) held at the Museo Elder in Las Palmas de Gran Canaria, Spain, from 10 to 12 January 2018. The aim of APPIS 2018 was to bring together scientists working on the development of intelligent computer systems and methods for machine learning, artificial intelligence, pattern recognition, and related techniques with an emphasis on their application to various problems. The 34 peer-reviewed papers included here cover an extraordinarily wide variety of topics – everything from semi-supervised learning to matching electro-chemical sensor information with human odor perception – but what they all have in common is the design and application of intelligent systems and their role in tackling diverse and complex challenges. The book will be of particular interest to all those involved in the development and application of intelligent systems.
A Practical Guide to Continuous Delivery
Author: Eberhard Wolff
Publisher: Addison-Wesley Professional
ISBN: 0134691547
Category : Computers
Languages : en
Pages : 472
Book Description
Using Continuous Delivery, you can bring software into production more rapidly, with greater reliability. A Practical Guide to Continuous Delivery is a 100% practical guide to building Continuous Delivery pipelines that automate rollouts, improve reproducibility, and dramatically reduce risk. Eberhard Wolff introduces a proven Continuous Delivery technology stack, including Docker, Chef, Vagrant, Jenkins, Graphite, the ELK stack, JBehave, and Gatling. He guides you through applying these technologies throughout build, continuous integration, load testing, acceptance testing, and monitoring. Wolff’s start-to-finish example projects offer the basis for your own experimentation, pilot programs, and full-fledged deployments. A Practical Guide to Continuous Delivery is for everyone who wants to introduce Continuous Delivery, with or without DevOps. For managers, it introduces core processes, requirements, benefits, and technical consequences. Developers, administrators, and architects will gain essential skills for implementing and managing pipelines, and for integrating Continuous Delivery smoothly into software architectures and IT organizations. Understand the problems that Continuous Delivery solves, and how it solves them Establish an infrastructure for maximum software automation Leverage virtualization and Platform as a Service (PAAS) cloud solutions Implement build automation and continuous integration with Gradle, Maven, and Jenkins Perform static code reviews with SonarQube and repositories to store build artifacts Establish automated GUI and textual acceptance testing with behavior-driven design Ensure appropriate performance via capacity testing Check new features and problems with exploratory testing Minimize risk throughout automated production software rollouts Gather and analyze metrics and logs with Elasticsearch, Logstash, Kibana (ELK), and Graphite Manage the introduction of Continuous Delivery into your enterprise Architect software to facilitate Continuous Delivery of new capabilities
Publisher: Addison-Wesley Professional
ISBN: 0134691547
Category : Computers
Languages : en
Pages : 472
Book Description
Using Continuous Delivery, you can bring software into production more rapidly, with greater reliability. A Practical Guide to Continuous Delivery is a 100% practical guide to building Continuous Delivery pipelines that automate rollouts, improve reproducibility, and dramatically reduce risk. Eberhard Wolff introduces a proven Continuous Delivery technology stack, including Docker, Chef, Vagrant, Jenkins, Graphite, the ELK stack, JBehave, and Gatling. He guides you through applying these technologies throughout build, continuous integration, load testing, acceptance testing, and monitoring. Wolff’s start-to-finish example projects offer the basis for your own experimentation, pilot programs, and full-fledged deployments. A Practical Guide to Continuous Delivery is for everyone who wants to introduce Continuous Delivery, with or without DevOps. For managers, it introduces core processes, requirements, benefits, and technical consequences. Developers, administrators, and architects will gain essential skills for implementing and managing pipelines, and for integrating Continuous Delivery smoothly into software architectures and IT organizations. Understand the problems that Continuous Delivery solves, and how it solves them Establish an infrastructure for maximum software automation Leverage virtualization and Platform as a Service (PAAS) cloud solutions Implement build automation and continuous integration with Gradle, Maven, and Jenkins Perform static code reviews with SonarQube and repositories to store build artifacts Establish automated GUI and textual acceptance testing with behavior-driven design Ensure appropriate performance via capacity testing Check new features and problems with exploratory testing Minimize risk throughout automated production software rollouts Gather and analyze metrics and logs with Elasticsearch, Logstash, Kibana (ELK), and Graphite Manage the introduction of Continuous Delivery into your enterprise Architect software to facilitate Continuous Delivery of new capabilities